图分类的目的是对图结构数据进行准确的信息提取和分类。在过去的几年里,图神经网络(GNNs)在图分类任务上取得了令人满意的成绩。然而,大多数基于GNNs的方法侧重于设计图卷积操作和图池操作,忽略了收集或标记图结构数据比基于网格的数据更困难。我们利用元学习来进行小样本图分类,以减少训练新任务时标记图样本的不足。更具体地说,为了促进图分类任务的学习,我们利用GNNs作为图嵌入主干,利用元学习作为训练范式,在图分类任务中快速捕获特定任务的知识并将其转移到新的任务中。为了提高元学习器的鲁棒性,我们设计了一种新的基于强化学习的步进控制器。实验表明,与基线相比,我们的框架运行良好。
https://www.zhuanzhi.ai/paper/57ada95511f9980fb1af5a413875a27b
专知便捷查看
便捷下载,请关注专知公众号(点击上方蓝色专知关注)
后台回复“FSGC” 就可以获取《浙江大学-使用MAML元学习的少样本图分类》专知下载链接