大会 | DiracNets:无需跳层连接的ResNet

2018 年 2 月 26 日 AI科技评论 David 9

AI 科技评论按:本文作者 David 9,首发于作者的个人博客,AI 科技评论获其授权转载。

虚拟化技术牺牲硬件开销和性能,换来软件功能的灵活性;深度模型也类似,如果把网络结构参数化,得到的模型更灵活易控,但是计算效率并不高。 — David 9

近年来深度网络结构的创新层出不穷:残差网络Inception 系列, Unet 等等...微软的残差网络 ResNet 就是经典的跳层连接(skip-connection):

来自:https://arxiv.org/pdf/1512.03385.pdf

上一层的特征图 x 直接与卷积后的 F(x)对齐加和,变为 F(x)+x (特征图数量不够可用 0 特征补齐,特征图大小不一可用带步长卷积做下采样)。这样在每层特征图中添加上一层的特征信息,可使网络更深,加快反馈与收敛。

但是 ResNet 也有明显的缺陷:我们无法证明把每一层特征图硬连接到下一层都是有用的;另外实验证明把 ResNet 变「深,不如把 ResNet 变, 即,到了一定深度,加深网络已经无法使 ResNet 准确度提升了(还不如把网络层像 Inception 那样变宽)。

于是,DiracNets 试图去掉固定的跳层连接,试图用参数化的方法代替跳层连接:

那么问题来了,我们怎么参数化这个被删除的跳层连接?使得新增的参数像卷积核窗口参数一样是可训练的?

有一点是确定的,我们知道 F(x)+x 的对齐求和操作是线性的,卷积操作 F 也是线性的,所以,理论上 F(x)+x 可以合并成一个卷积操作(或者一个线性变换):

其中 x 即输入特征图。其中

就是合并后的卷积核窗口参数矩阵(这个参数已经蕴含了卷积操作跳层操作)。

其中

代表卷积操作。

最后,让我们再把上式的参数拆分开来:

其中 W 即代表 ResNet 中的卷积操作的参数,I 即代表 ResNet 中的跳层操作的参数

有没有觉得 I 和单位矩阵很像? 你猜对了 ! I 就是由卷积窗口导出的单位参数矩阵,也叫 Dirac delta 变换,任何输入 x 经过这个 I 矩阵 的变换,其输出还是 x 本身。

diag (a) 也是一个可训练的向量参数,用来控制需要跳层连接的程度(需要单位矩阵的程度)。

现在我们看看这种参数化的 ResNet 是不是更灵活了?

如果 diag(a)向量都是趋近于 0 的,那么 I 单位矩阵就基本起不到作用, 那么跳层连接就被削弱了。这时原始的卷积操作 W 就认为占主导作用

如果 diag(a)向量都是趋近于 1 的,并且 W 参数都非常小,那么卷积操作就被削弱了,输出和输入的特征图 x 很相似

通过训练 diag(a),我们可以控制 ResNet 中的跳层操作和卷积操作两者的权重。而不是像传统 ResNet,不得不硬连接加上一个跳层连接(无论有用或没用)。

代码实现上,PyTorch 提供了许多灵活的方法,torch.nn.functional 接口允许你人工指定各个参数矩阵:

import torch.nn.functional as F

def dirac_conv2d(input, W, alpha, beta)

  return F.conv2d(input, alpha * dirac(W) + beta * normalize(W))

上面代码把参数矩阵对于之前说的拆分成两部分:

  1. alpha * dirac(W) + beta * normalize(W)

幸运的是pytorch提供现成的计算dirac单位矩阵的函数(http://pytorch.org/docs/0.1.12/nn.html#torch.nn.init.dirac)

  1. torch.nn.init.dirac(tensor)

如需深入研究,别错过源代码:

https://github.com/szagoruyko/diracnets

最后我们看看实验结果.

在同等深度的情况下,DiracNets 普遍需要更多的参数才能达到和 ResNet 相当的准确率: 

来自:https://arxiv.org/pdf/1706.00388.pdf

来自:https://arxiv.org/pdf/1706.00388.pdf

而如果不考虑参数数量,DiracNets 需要较少的深度,就能达到 ResNet 需要很深的深度才能达到的准确率:

来自:https://arxiv.org/pdf/1706.00388.pdf

参考文献:

  1. DiracNets: Training Very Deep Neural Networks Without Skip-Connections

  2. https://github.com/szagoruyko/diracnets

  3. Deep Residual Learning for Image Recognition

  4. https://zh.wikipedia.org/wiki/%E7%8B%84%E6%8B%89%E5%85%8B%CE%B4%E5%87%BD%E6%95%B0

  5. http://pytorch.org/docs/0.1.12/_modules/torch/nn/functional.html

残差网络:

https://arxiv.org/abs/1512.03385

 Unet:

https://github.com/zhixuhao/unet

ResNet:

https://arxiv.org/abs/1512.03385

DiracNets:

https://arxiv.org/abs/1706.00388

本文采用署名 – 非商业性使用 – 禁止演绎 3.0 中国大陆许可协议进行许可。著作权属于David 9的博客原创,如需转载,请联系微信: david9ml,或邮箱:yanchao727@gmail.com


—————  AI 科技评论招人了  —————

—————  给爱学习的你的福利  —————

三大模块,五大应用,手把手快速入门NLP

海外博士讲师,丰富项目经验

算法+实践,搭配典型行业应用

随到随学,专业社群,讲师在线答疑

点击阅读原文或扫码了解详情

————————————————————

登录查看更多
2

相关内容

神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
35+阅读 · 2020年4月15日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
39+阅读 · 2020年2月21日
【NeurIPS2019】图变换网络:Graph Transformer Network
对ResNet本质的一些思考
极市平台
26+阅读 · 2019年4月27日
对 ResNet 本质的一些思考
新智元
6+阅读 · 2019年4月12日
图像分类:常用分类网络结构(附论文下载)
极市平台
13+阅读 · 2019年4月8日
手把手教你构建ResNet残差网络
专知
38+阅读 · 2018年4月27日
一文简述ResNet及其多种变体
机器之心
23+阅读 · 2018年4月22日
深度学习DenseNet算法详解
数据挖掘入门与实战
7+阅读 · 2018年4月17日
从LeNet-5到DenseNet
AI研习社
9+阅读 · 2017年11月18日
[深度学习] AlexNet,GoogLeNet,VGG,ResNet简化版
机器学习和数学
20+阅读 · 2017年10月13日
干货 | 深度详解ResNet及其六大变体
AI100
8+阅读 · 2017年8月8日
Local Relation Networks for Image Recognition
Arxiv
4+阅读 · 2019年4月25日
Arxiv
5+阅读 · 2018年10月23日
Arxiv
5+阅读 · 2018年3月28日
VIP会员
相关资讯
【NeurIPS2019】图变换网络:Graph Transformer Network
对ResNet本质的一些思考
极市平台
26+阅读 · 2019年4月27日
对 ResNet 本质的一些思考
新智元
6+阅读 · 2019年4月12日
图像分类:常用分类网络结构(附论文下载)
极市平台
13+阅读 · 2019年4月8日
手把手教你构建ResNet残差网络
专知
38+阅读 · 2018年4月27日
一文简述ResNet及其多种变体
机器之心
23+阅读 · 2018年4月22日
深度学习DenseNet算法详解
数据挖掘入门与实战
7+阅读 · 2018年4月17日
从LeNet-5到DenseNet
AI研习社
9+阅读 · 2017年11月18日
[深度学习] AlexNet,GoogLeNet,VGG,ResNet简化版
机器学习和数学
20+阅读 · 2017年10月13日
干货 | 深度详解ResNet及其六大变体
AI100
8+阅读 · 2017年8月8日
Top
微信扫码咨询专知VIP会员