分享主题:神经霍克斯过程,一个基于神经网络的自调节多变量点过程
分享人:梅洪源 ,JHU CS 系二年级博士生,导师 Jason Eisner 教授。 他的研究兴趣在于机器学习和自然语言处理。 在此之前,他曾在芝加哥大学自然科学学院获得硕士学位,并在华中科技大学电子信息工程系获得学士学位。他曾在微软研究院和丰田技术研究所实习。
对连续时间上的离散事件进行建模,一直是一个非常重要的研究方向:发现事件中广泛而复杂的影响关系,可以帮助我们准确地预测未来事件的类型和发生时间。在这篇 NIPS 文章中,作者设计了一个基于神经网络的点过程模型,并通过一个 continuous-time LSTM 增强了该模型在连续时间上的表达和泛化能力。实验结果充分证实了所提出的模型的良好性能。
10 月 12 日(周四)上午 20:00,AI 研习社微信群
▷ 观看完整回顾大概需要 48 分钟
新人福利
关注 AI 研习社(okweiwu),回复 1 领取
【超过 1000G 神经网络 / AI / 大数据,教程,论文】