论文摘要:本文基于方差缩减、拒绝采样、访存优化等技术,研究了隐变量模型和深度表示学习两类模型的高效算法,并研究了这些算法在文本分析、生成式模型、图节 点分类等多个任务中的应用。具体地,本文创新点有:

  • 提出隐变量模型的方差缩减 EM 算法,并给出了其局部收敛速度和全局收敛性的理论结果。
  • 提出了缓存高效的 O(1) 时间复杂度主题模型采样算法,该算法较之前算法提速了 5-15 倍,且能扩展到数亿文档、数百万主题、上万 CPU 核的场景。
  • 提出了结构化主题模型的高效算法,具体包括层次化主题模型的部分坍缩吉 布斯采样算法,将该模型扩展到了比之前大5个数量级的数据集上;以及有监督主题模型的坐标下降、拒绝采样算法,较之前算法加速4倍。
  • 提出了总体匹配差异,一个两分布之间距离基于样本的估计;证明了总体匹配差异的一致性,并讨论了其在领域自适应、深度生成模型上的应用。
  • 提出了一个基于控制变量的图卷积网络高效随机训练算法,并给出了其收敛性证明和实验结果,较之前算法收敛速度快了7倍。

关键词:表示学习;隐变量模型;主题模型;采样算法;图卷积网络

作者介绍:陈健飞,他目前是清华大学计算机科学与技术系的博士研究生,他的博士生导师是朱军。他研究兴趣是大规模机器学习,尤其是可扩展的深层生成模型和深层主题模型。之前,他专注于扩展各种主题模型,包括LDA、CTM、DTM等。

成为VIP会员查看完整内容
47

相关内容

陈健飞,他目前是清华大学计算机科学与技术系的博士研究生,他的博士生导师是朱军。他研究兴趣是大规模机器学习,尤其是可扩展的深层生成模型和深层主题模型。之前,他专注于扩展各种主题模型,包括LDA、CTM、DTM等。
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
155+阅读 · 2020年5月26日
专知会员服务
41+阅读 · 2020年2月20日
精选论文 | 网络结构搜索-单目标跟踪【附打包下载】
人工智能前沿讲习班
3+阅读 · 2019年7月2日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
大讲堂 | 基于对抗学习和知识蒸馏的多模型集成算法
网络表示学习介绍
人工智能前沿讲习班
18+阅读 · 2018年11月26日
刘知远 | 语义表示学习
开放知识图谱
16+阅读 · 2018年8月9日
图上的归纳表示学习
科技创新与创业
23+阅读 · 2017年11月9日
关系推理:基于表示学习和语义要素
计算机研究与发展
18+阅读 · 2017年8月22日
Weight Poisoning Attacks on Pre-trained Models
Arxiv
5+阅读 · 2020年4月14日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
A Sketch-Based System for Semantic Parsing
Arxiv
4+阅读 · 2019年9月12日
Arxiv
8+阅读 · 2018年5月17日
Arxiv
3+阅读 · 2018年3月13日
VIP会员
相关资讯
精选论文 | 网络结构搜索-单目标跟踪【附打包下载】
人工智能前沿讲习班
3+阅读 · 2019年7月2日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
大讲堂 | 基于对抗学习和知识蒸馏的多模型集成算法
网络表示学习介绍
人工智能前沿讲习班
18+阅读 · 2018年11月26日
刘知远 | 语义表示学习
开放知识图谱
16+阅读 · 2018年8月9日
图上的归纳表示学习
科技创新与创业
23+阅读 · 2017年11月9日
关系推理:基于表示学习和语义要素
计算机研究与发展
18+阅读 · 2017年8月22日
相关论文
微信扫码咨询专知VIP会员