现实世界中的数据通常包含了多种实体类型,这些实体通过不同的实体关系互相关联形成了错综复杂的异构信息网络。为了有效地挖掘业务中广泛存在的异构信息网络,滴滴AI Labs团队自主研发了一种基于注意力机制的异构图神经网络模型(HetSANN),该模型无需使用传统模型中由专家定义的元路径,能够直接自动化地处理、挖掘原异质信息网络中丰富的语义信息,为网络中的实体提取出更有效的编码表示以应用到实体分类等下游任务中。
相较之前方法的局限性,本文的主要创新点为: