【ICLR2022】序列生成的目标侧数据增强

2022 年 2 月 14 日 专知


论文题目:Target-Side Data Augmentation for Sequence Generation

作者:解曙方,吕昂,夏应策,吴郦军,秦涛,刘铁岩,严睿

通讯作者:严睿

论文概述:自回归序列生成是机器学习和自然语言处理中的一个重要方法。每个元素在生成的时候,它同时基于输入条件和已经生成的元素。之前的数据增强方法,虽然已经在各种任务上取得的显著的效果,却只是被运用在了输入条件上。例如在输入的序列中增加噪声,或进行随机替换,打乱,掩码等操作。这些方法都忽视了对已生成元素的增强。本文提出了一种生成端的数据增强方法。在训练阶段,我们使用解码器的输出作为软标签,与真实数据一起生成增强的数据。这些增强数据则进一步用来训练解码器。我们在多个序列生成任务上进行了实验,包括对话生成,机器翻译,和摘要生成。在不使用额外数据和额外的模型参数的情况下,我们的方法在所有指标上显著的高于许多强力的基线模型,充分证明了我们的算法的有效性。

https://openreview.net/forum?id=pz1euXohm4H



专知便捷查看

便捷下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“TDSG” 就可以获取【ICLR2022】序列生成的目标侧数据增强》专知下载链接


专知,专业可信的人工智能知识分发 ,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取70000+AI主题干货知识资料!

欢迎微信扫一扫加专知微信助手,获取最新AI专业干货知识教程资料和与专家交流咨询

点击“ 阅读原文 ”,了解使用 专知 ,查看获取70000+AI主题知识资源
登录查看更多
0

相关内容

【AAAI 2022】用于文本摘要任务的序列级对比学习模型
专知会员服务
24+阅读 · 2022年1月11日
EMNLP 2021 | 学习改写非自回归机器翻译的翻译结果
专知会员服务
14+阅读 · 2021年12月25日
专知会员服务
65+阅读 · 2021年7月11日
专知会员服务
20+阅读 · 2021年2月7日
专知会员服务
107+阅读 · 2020年12月21日
CVPR 2022 | 用于目标检测的双加权标签分配
专知
0+阅读 · 2022年3月26日
【ICLR2022-MIT】图关系域适应
专知
1+阅读 · 2022年2月9日
【CVPR2021】基于Transformer的视频分割领域
专知
2+阅读 · 2021年4月16日
【MIT】硬负样本的对比学习
专知
13+阅读 · 2020年10月15日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月15日
Arxiv
15+阅读 · 2019年4月4日
VIP会员
相关VIP内容
【AAAI 2022】用于文本摘要任务的序列级对比学习模型
专知会员服务
24+阅读 · 2022年1月11日
EMNLP 2021 | 学习改写非自回归机器翻译的翻译结果
专知会员服务
14+阅读 · 2021年12月25日
专知会员服务
65+阅读 · 2021年7月11日
专知会员服务
20+阅读 · 2021年2月7日
专知会员服务
107+阅读 · 2020年12月21日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员