【导读】自2015年11月TensorFlow第一个开源版本发布以来,它便迅速跻身于最激动人心的机器学习库的行列,并在科研、产品和教育等领域正在得到日益广泛的应用。这个库也在不断地得到改进、充实和优化。今天给大家推荐一本偏实战的教程《Hands-On Machine Learning with Scikit-Learn and TensorFlow, 2nd Edition》第二版,使用最新TensorFlow 2的官方高级API,帮助你直观地理解构建智能系统的概念和工具。从业者将学习一系列可以在工作中快速使用的技术。第1部分使用Scikit-Learn来介绍基本的机器学习任务,例如简单的线性回归。第2部分已经过重大更新,采用Keras和TensorFlow 2.0引导读者通过使用深度神经网络的更先进的机器学习方法。通过每章的练习来帮助你应用所学知识,你只需要编程经验即可开始使用。

Hands-On Machine Learning with Scikit-Learn and TensorFlow, 2nd Edition

▌本书简介

通过近年来一系列的突破,深度学习推动了整个机器学习领域的发展。现在,即使对这种技术几乎一无所知的程序员也可以使用简单、高效的工具来实现能够从数据中学习的程序。这本畅销书的最新版本使用了具体的例子、最少理论和可复现的Python框架,帮助您直观地理解用于构建人工智能系统的概念和工具。

您将学习一系列可以快速使用的技术。每一章都有练习来帮助你应用所学,你所需要的只是编程经验。所有代码都已更新为TensorFlow 2和最新版本的Scikit-Learn和其他库。

  • 探索Keras API, TensorFlow 2的官方高级API
  • 使用TensorFlow的数据API、分发策略API和TensorFlow扩展平台(TFX)对TensorFlow模型进行产品化
  • 部署在Google Cloud ML引擎或移动设备上使用TFLite
  • 学习新的和扩展的主题,包括聚类、异常检测、对象检测、语义分割、注意力机制、语言模型、GANs等

▌相关代码

https://github.com/ageron/handson-ml2

参考链接: https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/

成为VIP会员查看完整内容
0
177

相关内容

“机器学习是近20多年兴起的一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。机器学习理论主要是设计和分析一些让 可以自动“ 学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与统计推断学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。很多 推论问题属于 无程序可循难度,所以部分的机器学习研究是开发容易处理的近似算法。” ——中文维基百科

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

书名: Hands-On Machine Learning with Scikit-Learn and TensorFlow

主要内容:

这本书分为两个部分。

第一部分,机器学习的基础知识,涵盖以下主题:

  • 什么是机器学习?它被试图用来解决什么问题?机器学习系统的主要类别和基本概念是什么?
  • 典型的机器学习项目中的主要步骤。
  • 通过拟合数据来学习模型。
  • 优化成本函数(cost function)。
  • 零、前言
  • 处理,清洗和准备数据。
  • 选择和设计特征。
  • 使用交叉验证选择一个模型并调整超参数。
  • 机器学习的主要挑战,特别是欠拟合和过拟合(偏差和方差权衡)。
  • 对训练数据进行降维以对抗 the curse of dimensionality(维度诅咒)
  • 最常见的学习算法:线性和多项式回归, Logistic 回归,k-最近邻,支持向量机,决策 树,随机森林和集成方法。

第二部分,神经网络和深度学习,包括以下主题:

  • 什么是神经网络?它们有啥优势?
  • 使用 TensorFlow 构建和训练神经网络。
  • 最重要的神经网络架构:前馈神经网络,卷积网络,递归网络,长期短期记忆网络 (LSTM)和自动编码器。
  • 训练深度神经网络的技巧。
  • 对于大数据集缩放神经网络。
  • 强化学习。

第一部分主要基于 scikit-learn ,而第二部分则使用 TensorFlow 。 注意:不要太急于深入学习到核心知识:深度学习无疑是机器学习中最令人兴奋的领域之 一,但是你应该首先掌握基础知识。而且,大多数问题可以用较简单的技术很好地解决(而 不需要深度学习),比如随机森林和集成方法(我们会在第一部分进行讨论)。如果你拥有 足够的数据,计算能力和耐心,深度学习是最适合复杂的问题的,如图像识别,语音识别或 自然语言处理。

成为VIP会员查看完整内容
Hands on Machine Learning with Scikit Learn and TensorFlow - 中文版.pdf
0
81

https://www.manning.com/books/deep-learning-with-javascript

深度学习已经改变了计算机视觉、图像处理和自然语言应用领域。多亏了TensorFlow.js,现在JavaScript开发人员可以无需依赖Python或R就能构建深度学习应用程序。使用JavaScript的深度学习向开发人员展示了如何将DL技术引入web。本书由TensorFlow库的主要作者编写,为在浏览器或Node上使用JavaScript进行深度学习的应用程序提供了有趣的用例和深入的指导。

关于技术

在浏览器或基于Node的后端中运行深度学习应用程序,为智能web应用程序开辟了令人兴奋的可能性。使用TensorFlow.js库,您可以用JavaScript构建和训练深度学习模型。TensorFlow.js具有无与伦比的可扩展性,模块化和响应能力,其可移植性确实令人眼前一亮。它的模型可以在JavaScript运行的任何地方运行,从而将ML推向应用程序堆栈的更上层。

关于这本书

在Deep Learning with JavaScript这本书中,您将学习使用TensorFlow.js来构建直接在浏览器中运行的深度学习模型。这本快节奏的书由Google工程师撰写,是实用的,引人入胜且易于阅读。通过以文本分析,语音处理,图像识别和自学习游戏AI为特色的各种示例,您将掌握深度学习的所有基础知识并探索高级概念,例如对现有模型进行再训练以进行迁移学习和图像生成。

书里面有什么

在浏览器中的图像和语言处理

用客户端数据调优ML模型

通过生成式深度学习创建文本和图像

源代码示例以进行测试和修改

成为VIP会员查看完整内容
0
71

在六个步骤中学习高级Python 3主题的基础知识,所有这些都是为了让您成为一个有价值的实践者而设计的。这个更新版本的方法基于“六度分离”理论,该理论指出每个人和每件事都是最多六步之遥,并将每个主题分为两部分: 理论概念和使用适当的Python 3包的实际实现。

您将从Python 3编程语言基础、机器学习历史、发展和系统开发框架开始。本文还介绍了一些关键的数据挖掘/分析概念,如探索性分析、特征降维、回归、时间序列预测及其在Scikit-learn中的有效实现。您还将学习常用的模型诊断和调优技术。其中包括最优的类创建概率截止点、方差、偏差、装袋、提升、集成投票、网格搜索、随机搜索、贝叶斯优化和物联网数据降噪技术。

最后,您将回顾先进的文本挖掘技术,推荐系统,神经网络,深度学习,强化学习技术及其实现。本书中提供的所有代码都将以iPython笔记本的形式提供,使您能够尝试这些示例并将其扩展到您的优势。

你将学习

  • 了解机器学习开发和框架
  • 评估模型诊断和机器学习中的调优
  • 检查文本挖掘、自然语言处理(NLP)和推荐系统
  • 复习强化学习和CNN

这本书是给谁看的

Python开发人员、数据工程师和机器学习工程师希望将他们的知识或职业扩展到机器学习领域。

成为VIP会员查看完整内容
0
157

简介: Google一直是引入突破性技术和产品的先驱。在效率和规模方面,TensorFlow也不例外,因此,编写本书只是向读者介绍TensorFlow核心团队所做的这些重要更改。本书着重于机器学习方面的TensorFlow的不同应用,并更深入地探讨了方法的最新变化。对于那些想要用TensorFlow进行机器学习的人来说,这本书是一个很好的参考点。本书分为三个部分。第一篇:使用TensorFlow 2.0进行数据处理。第二部分:使用TensorFlow 2.0构建机器学习和深度学习模型。它还包括使用TensorFlow 2.0的神经语言编程(NLP)。第三部分介绍了如何在环境中保存和部署TensorFlow 2.0模型。这本书对数据分析人员和数据工程师也很有用,因为它涵盖了使用TensorFlow 2.0处理大数据的步骤。想要过渡到数据科学和机器学习领域的读者也会发现,本书提供了实用的入门指南,以后可能会出现更复杂的方面。书中提供的案例研究和示例使您很容易理解和理解相关的基本概念。本书的优势在于其简单性以及将机器学习应用于有意义的数据集。

目录:

  • Chapter 1:tenforflow 2.0介绍
    • tensor
    • TensorFlow 1.0与 Tensorflow 2.0的对比
    • Tensorflow 2.0安装于基础操作
  • Chapter 2:tenforflow 与监督学习
    • 监督机器学习是什么
    • TF2.0实现线性回归
    • 使用TF和Keras的线性回归应用
    • TF2.0实现逻辑回归
    • TF2.0实现boosted树
  • Chapter 3:tenforflow与深度神经网络
    • 什么是神经网络
    • 前向传播与反向传播
    • TF2.0构建神经网络
    • 深度神经网络
    • TF2.0构建深度神经网络
    • 使用Keras模型估量
    • 总结
  • Chapter 4:图片与Tensorflow
    • 图片处理
    • 卷积神经网络
    • TF2.0与卷积神经网络
    • 迁移学习
    • TF2.0与变分自编码器
    • 总结
  • Chapter 5:TF2.0与自然语言处理(NLP)
    • NLP概述
    • 文本处理
    • 文本分类与TF
    • TF projector
  • Chapter 6:TF模型
    • TF部署
    • 模型部署的Python
    • 基于TF的Keras模型
成为VIP会员查看完整内容
0
164

题目: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition

书籍简介: 通过最近的一系列突破,深度学习促进了整个机器学习领域的发展。现在,即使对这项技术一无所知的程序员也可以使用简单、高效的工具来实现能够从数据中学习的程序。这本实用的书告诉你怎么做。通过使用具体的例子、最小理论和两个可用于生产的Python框架Scikit Learn和TensorFlow的作者Aurélien Géron帮助您直观地理解用于构建智能系统的概念和工具。您将学习一系列技术,从简单的线性回归开始,然后进入深层神经网络。每一章的练习都有助于你应用你所学的知识。

  • 探索机器学习领域,特别是神经网络

  • 使用Scikit Learn端到端跟踪示例机器学习项目

  • 探索几种训练模型,包括支持向量机、决策树、随机森林和集成方法

  • 利用TensorFlow库建立和训练神经网络

  • 深入研究神经网络结构,包括卷积网络、递归网络和深度强化学习

  • 学习深度神经网络的训练和缩放技术

作者简介: Aurélien Géron,Kiwisoft的机器学习顾问,也是畅销书《与Scikit-Learn、Keras和TensorFlow一起进行机器学习》的作者。此前,他曾领导YouTube的视频分类团队,是Wifirst的创始人和首席技术官,并在多个领域担任顾问:金融(摩根大楼和法国兴业银行)、国防(加拿大国防部)和医疗(输血)。他还出版了一些技术书籍(关于c++、WiFi和互联网架构),他是巴黎多芬大学的讲师。

成为VIP会员查看完整内容
0
156

本书的作者是Aurélien Géron,一名机器学习顾问。作为一名前Google职员,在2013至2016年间,他领导了YouTube视频分类团队。在2002至2012年间,他身为法国主要的无线ISP Wifirst的创始人和CTO,在2001年他还是Polyconseil的创始人和CTO。本书通过具体的例子、很少的理论以及两款成熟的Python框架:Scikit-Learn和TensorFlow,作者Aurélien Géron会帮助你掌握构建智能系统所需要的概念和工具。你将会学习到各种技术,从简单的线性回归及发展到深度神经网络。

成为VIP会员查看完整内容
0
48
小贴士
相关论文
Mining Disinformation and Fake News: Concepts, Methods, and Recent Advancements
Kai Shu,Suhang Wang,Dongwon Lee,Huan Liu
7+阅读 · 2020年1月2日
Rama Kumar Pasumarthi,Sebastian Bruch,Xuanhui Wang,Cheng Li,Michael Bendersky,Marc Najork,Jan Pfeifer,Nadav Golbandi,Rohan Anil,Stephan Wolf
4+阅读 · 2019年5月17日
Michael Azmy,Peng Shi,Jimmy Lin,Ihab F. Ilyas
3+阅读 · 2019年3月15日
Andrei Popescu-Belis
4+阅读 · 2019年1月25日
A Survey of Learning Causality with Data: Problems and Methods
Ruocheng Guo,Lu Cheng,Jundong Li,P. Richard Hahn,Huan Liu
7+阅读 · 2018年9月25日
Seyed Sajad Mousavi,Michael Schukat,Enda Howley
12+阅读 · 2018年6月23日
Deepak Pathak,Yide Shentu,Dian Chen,Pulkit Agrawal,Trevor Darrell,Sergey Levine,Jitendra Malik
4+阅读 · 2018年6月21日
Abhishek Gupta,Benjamin Eysenbach,Chelsea Finn,Sergey Levine
6+阅读 · 2018年6月12日
Dan Xu,Xavier Alameda-Pineda,Jingkuan Song,Elisa Ricci,Nicu Sebe
7+阅读 · 2018年3月5日
Oriol Vinyals,Charles Blundell,Timothy Lillicrap,Koray Kavukcuoglu,Daan Wierstra
8+阅读 · 2017年12月29日
Top