【导读】自2015年11月TensorFlow第一个开源版本发布以来,它便迅速跻身于最激动人心的机器学习库的行列,并在科研、产品和教育等领域正在得到日益广泛的应用。这个库也在不断地得到改进、充实和优化。今天给大家推荐一本偏实战的教程《Hands-On Machine Learning with Scikit-Learn and TensorFlow, 2nd Edition》第二版,使用最新TensorFlow 2的官方高级API,帮助你直观地理解构建智能系统的概念和工具。从业者将学习一系列可以在工作中快速使用的技术。第1部分使用Scikit-Learn来介绍基本的机器学习任务,例如简单的线性回归。第2部分已经过重大更新,采用Keras和TensorFlow 2.0引导读者通过使用深度神经网络的更先进的机器学习方法。通过每章的练习来帮助你应用所学知识,你只需要编程经验即可开始使用。

Hands-On Machine Learning with Scikit-Learn and TensorFlow, 2nd Edition

▌本书简介

通过近年来一系列的突破,深度学习推动了整个机器学习领域的发展。现在,即使对这种技术几乎一无所知的程序员也可以使用简单、高效的工具来实现能够从数据中学习的程序。这本畅销书的最新版本使用了具体的例子、最少理论和可复现的Python框架,帮助您直观地理解用于构建人工智能系统的概念和工具。

您将学习一系列可以快速使用的技术。每一章都有练习来帮助你应用所学,你所需要的只是编程经验。所有代码都已更新为TensorFlow 2和最新版本的Scikit-Learn和其他库。

  • 探索Keras API, TensorFlow 2的官方高级API
  • 使用TensorFlow的数据API、分发策略API和TensorFlow扩展平台(TFX)对TensorFlow模型进行产品化
  • 部署在Google Cloud ML引擎或移动设备上使用TFLite
  • 学习新的和扩展的主题,包括聚类、异常检测、对象检测、语义分割、注意力机制、语言模型、GANs等

▌相关代码

https://github.com/ageron/handson-ml2

参考链接: https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/

成为VIP会员查看完整内容
278

相关内容

“机器学习是近20多年兴起的一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。机器学习理论主要是设计和分析一些让 可以自动“ 学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与统计推断学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。很多 推论问题属于 无程序可循难度,所以部分的机器学习研究是开发容易处理的近似算法。” ——中文维基百科

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【实用书】Python机器学习Scikit-Learn应用指南,247页pdf
专知会员服务
267+阅读 · 2020年6月10日
【干货书】机器学习Python实战教程,366页pdf
专知会员服务
342+阅读 · 2020年3月17日
Sklearn 与 TensorFlow 机器学习实用指南,385页pdf
专知会员服务
130+阅读 · 2020年3月15日
TensorFlow 2.0深度强化学习指南
云栖社区
18+阅读 · 2019年2月1日
从入门到头秃,2018年机器学习图书TOP10
新智元
15+阅读 · 2018年12月8日
Arxiv
15+阅读 · 2018年6月23日
Arxiv
6+阅读 · 2018年6月21日
Arxiv
10+阅读 · 2017年12月29日
VIP会员
微信扫码咨询专知VIP会员