在现实世界的应用中,任意视图缺失普遍存在,因此对不完整的多视图数据进行分类是不可避免的。尽管已经取得了很大的进展,但由于缺失视图具有较高的不确定性,现有的不完整多视图方法仍然难以获得可信的预测。首先,缺失视图具有高度的不确定性,因此提供单一的确定性填补是不合理的。其次,估算数据本身的质量具有高度的不确定性。为了探索和利用不确定性,我们提出了一种不确定性诱导的不完整多视图数据分类(UIMC)模型,在稳定可靠的框架下对不完整多视图数据进行分类。我们构建一个分布并多次采样以表征缺失视图的不确定性,并根据采样质量自适应地利用它们。因此,所提方法实现了更加可感知的填补和可控的融合。具体来说,我们根据可用视图对每个缺失数据建立一个分布模型,从而引入不确定性。然后采用一种基于证据的融合策略来确保插补视图的可信融合。在多个基准数据集上进行了广泛的实验,我们的方法在性能和可信性方面都取得了最先进的性能。

成为VIP会员查看完整内容
26

相关内容

CVPR 2023大会将于 6 月 18 日至 22 日在温哥华会议中心举行。CVPR是IEEE Conference on Computer Vision and Pattern Recognition的缩写,即IEEE国际计算机视觉与模式识别会议。该会议是由IEEE举办的计算机视觉和模式识别领域的顶级会议,会议的主要内容是计算机视觉与模式识别技术。 CVPR 2023 共收到 9155 份提交,比去年增加了 12%,创下新纪录,今年接收了 2360 篇论文,接收率为 25.78%。作为对比,去年有 8100 多篇有效投稿,大会接收了 2067 篇,接收率为 25%。
【CVPR2022】提示分布学习
专知会员服务
29+阅读 · 2022年5月17日
【CVPR2022】整合少样本学习的分类和分割
专知会员服务
26+阅读 · 2022年3月31日
【CVPR2022】双曲图像分割
专知会员服务
18+阅读 · 2022年3月14日
【AAAI2022】不确定性感知的多视角表示学习
专知会员服务
45+阅读 · 2022年1月25日
【NeurIPS 2021】多视角对比图聚类
专知会员服务
35+阅读 · 2021年10月31日
专知会员服务
29+阅读 · 2021年5月20日
【CVPR2021】现实世界域泛化的自适应方法
专知会员服务
55+阅读 · 2021年3月31日
专知会员服务
21+阅读 · 2021年3月25日
专知会员服务
19+阅读 · 2021年3月18日
【硬核书】机器学习对抗鲁棒性,276页pdf
专知
8+阅读 · 2022年9月20日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
国家自然科学基金
5+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
7+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月29日
Arxiv
0+阅读 · 2023年5月27日
Arxiv
12+阅读 · 2020年8月3日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
A Multi-Objective Deep Reinforcement Learning Framework
Arxiv
15+阅读 · 2018年6月23日
Arxiv
16+阅读 · 2018年2月7日
VIP会员
相关VIP内容
【CVPR2022】提示分布学习
专知会员服务
29+阅读 · 2022年5月17日
【CVPR2022】整合少样本学习的分类和分割
专知会员服务
26+阅读 · 2022年3月31日
【CVPR2022】双曲图像分割
专知会员服务
18+阅读 · 2022年3月14日
【AAAI2022】不确定性感知的多视角表示学习
专知会员服务
45+阅读 · 2022年1月25日
【NeurIPS 2021】多视角对比图聚类
专知会员服务
35+阅读 · 2021年10月31日
专知会员服务
29+阅读 · 2021年5月20日
【CVPR2021】现实世界域泛化的自适应方法
专知会员服务
55+阅读 · 2021年3月31日
专知会员服务
21+阅读 · 2021年3月25日
专知会员服务
19+阅读 · 2021年3月18日
相关基金
国家自然科学基金
5+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
7+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
Arxiv
0+阅读 · 2023年5月29日
Arxiv
0+阅读 · 2023年5月27日
Arxiv
12+阅读 · 2020年8月3日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
A Multi-Objective Deep Reinforcement Learning Framework
Arxiv
15+阅读 · 2018年6月23日
Arxiv
16+阅读 · 2018年2月7日
微信扫码咨询专知VIP会员