机器学习暑期学校(MLSS)系列开始于2002年,致力于传播统计机器学习和推理的现代方法。今年因新冠疫情在线举行,从6月28号到7月10号讲述了众多机器学习主题。本文推荐来自牛津大学Yee Whye Teh教授讲述《元学习》,165页ppt系统性讲述了元学习基础知识和最新进展,非常干货。
地址: http://mlss.tuebingen.mpg.de/2020/schedule.html
作者介绍
Yee Whye Teh是牛津大学统计学系的统计机器学习教授,也是DeepMind研究人工智能的科学家。他在多伦多大学(Geoffrey E. Hinton教授)获得博士学位,并在加州大学伯克利分校(Michael I. Jordan教授)和新加坡国立大学(Lee Kuan Yew博士后研究员)从事博士后工作。在进入牛津大学和DeepMind之前,他是一名讲师,后来在伦敦大学学院(UCL)盖茨比计算神经科学单元(Gatsby computing Neuroscience Unit)担任读者。他计划联合主席(Michael Titterington教授)人工智能国际会议和统计(AISTATS) 2010年,项目主持国际会议(Precup试图教授)在2017年机器学习(ICML),和am /贝叶斯分析的副主编,IEEE模式分析与机器智能,机器学习日报,统计科学,英国皇家统计学会期刊B辑和机器学习研究期刊。他曾多次担任NIPS、ICML和AISTATS的区域主席。他的研究兴趣横跨机器学习和计算统计学,包括概率方法、贝叶斯非参数学和深度学习。他开发了新颖的模型以及高效的推理和学习算法。