通过理论理解深度强化学习(deep RL)中最流行的库,本新版专注于深度RL的最新进展,采用代码学习的方法,使读者能够理解并复现该领域的最新研究。
本书介绍了从游戏、机器人到金融的新代理环境,帮助读者尝试将强化学习应用于不同领域。多智能体强化学习章节涵盖了多个智能体的竞争方式,另一章节则专注于广泛使用的深度RL算法——近端策略优化(Proximal Policy Optimization, PPO)。读者将了解如何通过大型语言模型(如ChatGPT)使用人类反馈强化学习(Reinforcement Learning from Human Feedback, RLHF)来提升对话能力。
本书还将介绍在多个云系统上使用代码和在Hugging Face Hub等平台上部署模型的步骤。代码采用Jupyter Notebook格式,可以在Google Colab等深度学习云平台上运行,允许读者根据自己的需求调整代码。无论是在游戏、机器人还是生成AI应用中,《Deep Reinforcement Learning with Python》都将帮助您保持技术前沿。
本书适合希望提升对深度RL理解并获取实际实现RL算法技能的软件工程师和机器学习开发者。通过本书,您将能够从头开始实现并优化RL算法,掌握前沿技术应用于实际项目。