在海量大数据的帮助下,深度学习在许多领域都取得了显著的成功。但是,数据标签的质量是一个问题,因为在许多现实场景中缺乏高质量的标签。由于带噪标签严重降低了深度神经网络的泛化性能,从带噪标签中学习(鲁棒训练)已成为现代深度学习应用的一项重要任务。在这个综述中,我们首先从监督学习的角度来描述标签噪声的学习问题。接下来,我们提供了对46种最先进的鲁棒训练方法的全面回顾,所有这些方法根据其方法上的差异被归类为7组,然后系统地比较用于评价其优越性的6种属性。然后,总结了常用的评价方法,包括公共噪声数据集和评价指标。最后,我们提出了几个有前景的研究方向,可以作为未来研究的指导。