南洋理工最新《命名实体识别深度学习方法》综述论文,25页pdf

2018 年 12 月 28 日 专知

【导读】近几年来,基于神经网络的深度学习方法在计算机视觉、语音识别等领域取得了巨大成功,另外在自然语言处理领域也取得了不少进展。在NLP的关键性基础任务—命名实体识别(Named Entity Recognition,NER)的研究中,深度学习获得了不错的效果。近日,南洋理工Aixun Sun等学者在Arxiv发布一篇最新关于命名实体识别的深度学习方法综述论文,详细描述了最新方法的资源与分类,是不可多得参阅材料。



命名实体识别NER


NER又称作专名识别,是自然语言处理中的一项基础任务,应用范围非常广泛。命名实体一般指的是文本中具有特定意义或者指代性强的实体,通常包括人名、地名、组织机构名、日期时间、专有名词等。NER系统就是从非结构化的输入文本中抽取出上述实体,并且可以按照业务需求识别出更多类别的实体,比如产品名称、型号、价格等。因此实体这个概念可以很广,只要是业务需要的特殊文本片段都可以称为实体。下面是一个例子。



NER是NLP中一项基础性关键任务。从自然语言处理的流程来看,NER可以看作词法分析中未登录词识别的一种,是未登录词中数量最多、识别难度最大、对分词效果影响最大问题。同时NER也是关系抽取、事件抽取、知识图谱、机器翻译、问答系统等诸多NLP任务的基础。


命名实体识别深度学习方法综述


【摘要】命名实体识别(Named entity recognition, NER)的任务是鉴别出提到命名实体的文本位置,并将它们划分为预定义的类别,如人员、位置、组织等。虽然早期的NER系统能够成功地产生良好的识别精度,但它们往往需要大量的人力来仔细设计规则或特征。近年来,基于连续实值向量表示和通过非线性处理的语义组合的深度学习被应用到NER系统中,产生了最好的识别性能。在本文中,我们对现有的面向NER的深度学习技术进行了全面的回顾。我们首先介绍NER资源,包括标记的NER语料库和现成的NER工具。然后,我们系统地将现有的作品按照三个轴分类:输入的分布式表示、上下文编码器和标记解码器。接下来,我们调查了在新的NER问题设置和应用中最新应用技术的最具代表性的方法。最后,我们向读者介绍了NER系统面临的挑战,并概述了这一领域的未来发展方向。


【论文地址】

http://www.zhuanzhi.ai/paper/2a575334d5f0c17b73b4f98fab99dac6


【论文下载】

 请关注专知公众号(扫一扫最下面专知二维码,或者点击上方蓝色专知

  • 后台回复“NERDL” 就可以获取本文的下载链接~ 

  • 专知2019年1月将开设一门《深度学习:算法到实战》会重点讲解深度学习序列标注模型用于命名实体识别,欢迎关注报名!

       专知开课啦!《深度学习: 算法到实战》, 中科院博士为你讲授!


【论文导读】

NER数据集

NER开源工具

深度学习命名实体识别框架

基于深度神经网络的命名实体识别方法集合

论文页面:


-END-

专 · 知

   专知开课啦!《深度学习: 算法到实战》, 中科院博士为你讲授!


请加专知小助手微信(扫一扫如下二维码添加),咨询《深度学习:算法到实战》参团限时优惠报名~

欢迎微信扫一扫加入专知人工智能知识星球群,获取专业知识教程视频资料和与专家交流咨询!

请PC登录www.zhuanzhi.ai或者点击阅读原文,注册登录专知,获取更多AI知识资料!

点击“阅读原文”,了解报名专知《深度学习:算法到实战》课程

登录查看更多
46

相关内容

最新《深度多模态数据分析》综述论文,26页pdf
专知会员服务
299+阅读 · 2020年6月16日
专知会员服务
156+阅读 · 2020年4月21日
专知会员服务
201+阅读 · 2020年3月6日
2019->2020必看的十篇「深度学习领域综述」论文
专知会员服务
272+阅读 · 2020年1月1日
南洋理工大学,深度学习推荐系统综述
专知会员服务
176+阅读 · 2019年10月14日
NLP命名实体识别开源实战教程 | 深度应用
AI100
15+阅读 · 2019年8月18日
一文读懂命名实体识别
AINLP
31+阅读 · 2019年4月23日
面向新闻媒体的命名实体识别技术
PaperWeekly
18+阅读 · 2019年4月17日
命名实体识别(NER)综述
AI研习社
66+阅读 · 2019年1月30日
自动驾驶最新综述论文(31页PDF下载)
专知
118+阅读 · 2019年1月15日
ACL 2018 | 利用Lattice LSTM的最优中文命名实体识别方法
黑龙江大学自然语言处理实验室
7+阅读 · 2018年7月3日
从0到1,这篇深度学习综述送给你!
机器学习算法与Python学习
27+阅读 · 2018年6月13日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
Arxiv
7+阅读 · 2019年5月31日
Arxiv
13+阅读 · 2019年1月26日
Knowledge Representation Learning: A Quantitative Review
Arxiv
7+阅读 · 2018年12月26日
Arxiv
53+阅读 · 2018年12月11日
Meta-Learning with Latent Embedding Optimization
Arxiv
6+阅读 · 2018年7月16日
Arxiv
5+阅读 · 2018年1月30日
VIP会员
相关VIP内容
最新《深度多模态数据分析》综述论文,26页pdf
专知会员服务
299+阅读 · 2020年6月16日
专知会员服务
156+阅读 · 2020年4月21日
专知会员服务
201+阅读 · 2020年3月6日
2019->2020必看的十篇「深度学习领域综述」论文
专知会员服务
272+阅读 · 2020年1月1日
南洋理工大学,深度学习推荐系统综述
专知会员服务
176+阅读 · 2019年10月14日
相关资讯
NLP命名实体识别开源实战教程 | 深度应用
AI100
15+阅读 · 2019年8月18日
一文读懂命名实体识别
AINLP
31+阅读 · 2019年4月23日
面向新闻媒体的命名实体识别技术
PaperWeekly
18+阅读 · 2019年4月17日
命名实体识别(NER)综述
AI研习社
66+阅读 · 2019年1月30日
自动驾驶最新综述论文(31页PDF下载)
专知
118+阅读 · 2019年1月15日
ACL 2018 | 利用Lattice LSTM的最优中文命名实体识别方法
黑龙江大学自然语言处理实验室
7+阅读 · 2018年7月3日
从0到1,这篇深度学习综述送给你!
机器学习算法与Python学习
27+阅读 · 2018年6月13日
相关论文
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
Arxiv
7+阅读 · 2019年5月31日
Arxiv
13+阅读 · 2019年1月26日
Knowledge Representation Learning: A Quantitative Review
Arxiv
7+阅读 · 2018年12月26日
Arxiv
53+阅读 · 2018年12月11日
Meta-Learning with Latent Embedding Optimization
Arxiv
6+阅读 · 2018年7月16日
Arxiv
5+阅读 · 2018年1月30日
Top
微信扫码咨询专知VIP会员