书籍描述不只是谈论人工智能,而是构建它:您的大语言模型(LLMs)应用开发指南 主要特性

  • 探索自然语言处理(NLP)基础和大语言模型基本原理,包括基础知识、挑战和模型类型。
  • 学习数据处理和预处理技术,以实现高效的数据管理。
  • 了解神经网络概述,包括神经网络基础、循环神经网络(RNNs)、卷积神经网络(CNNs)和变压器模型。
  • 利用大语言模型的策略和示例。

描述通过强大的大语言模型(LLMs)改变您的业务景观。本书为您提供实用的见解,指导您从构思、设计到实施有影响力的LLM驱动的应用程序。 本书探讨了NLP的基础知识,如应用、演变、组件和语言模型。它教授数据预处理、神经网络和特定架构如RNNs、CNNs和变压器。它解决了训练挑战,介绍了如生成对抗网络(GANs)、元学习的高级技术,并引入了如GPT-3和BERT的顶级LLM模型。它还涵盖了提示工程。最后,它展示了LLM的应用,并强调了负责任的开发和部署。 有了这本书作为您的指南,您将能够导航不断发展的LLM技术景观,通过最新的进展和行业最佳实践保持领先地位。 你将学到什么

  • 掌握自然语言处理(NLP)应用的基础。
  • 探索变换器等先进架构及其应用。
  • 掌握有效训练大语言模型的技术。
  • 实施高级策略,如元学习和自监督学习。
  • 学习构建自定义语言模型应用的实际步骤。

这本书适合谁本书适合那些希望精通大语言模型的人,包括经验丰富的研究人员、数据科学家、开发人员和自然语言处理(NLP)领域的从业者。 目录

  1. 自然语言处理的基础
  2. 语言模型简介
  3. 语言建模的数据收集和预处理
  4. 语言建模中的神经网络
  5. 语言建模的神经网络架构
  6. 用于语言建模的变换器模型
  7. 训练大语言模型
  8. 语言建模的高级技术
  9. 顶级大语言模型
  10. 构建首个LLM应用
  11. LLMs的应用
  12. 伦理考虑
  13. 提示工程
  14. LLMs及其影响的未来

关于作者Sanket Subhash Khandare是一位充满活力和有影响力的技术执行官,拥有超过18年的产品领导和企业家精神经验。值得注意的是,他一直在领导各种人工智能倡议,主要是在大语言模型(LLMs)方面,同时优先考虑真正的客户价值而非仅将AI集成到解决方案中。他在通过创新的基于SaaS的产品扩大技术公司规模、推动高速增长方面有着良好的记录。

成为VIP会员查看完整内容
69

相关内容

大语言模型是基于海量文本数据训练的深度学习模型。它不仅能够生成自然语言文本,还能够深入理解文本含义,处理各种自然语言任务,如文本摘要、问答、翻译等。2023年,大语言模型及其在人工智能领域的应用已成为全球科技研究的热点,其在规模上的增长尤为引人注目,参数量已从最初的十几亿跃升到如今的一万亿。参数量的提升使得模型能够更加精细地捕捉人类语言微妙之处,更加深入地理解人类语言的复杂性。在过去的一年里,大语言模型在吸纳新知识、分解复杂任务以及图文对齐等多方面都有显著提升。随着技术的不断成熟,它将不断拓展其应用范围,为人类提供更加智能化和个性化的服务,进一步改善人们的生活和生产方式。
【干货书】深度学习全面指南,307页pdf
专知
30+阅读 · 2022年1月6日
国家自然科学基金
11+阅读 · 2016年12月31日
国家自然科学基金
6+阅读 · 2015年12月31日
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
22+阅读 · 2015年12月31日
国家自然科学基金
30+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
8+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Arxiv
142+阅读 · 2023年4月20日
A Survey of Large Language Models
Arxiv
348+阅读 · 2023年3月31日
Arxiv
59+阅读 · 2023年3月26日
Arxiv
122+阅读 · 2023年3月24日
Arxiv
18+阅读 · 2023年3月17日
VIP会员
相关VIP内容
相关基金
国家自然科学基金
11+阅读 · 2016年12月31日
国家自然科学基金
6+阅读 · 2015年12月31日
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
22+阅读 · 2015年12月31日
国家自然科学基金
30+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
8+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
微信扫码咨询专知VIP会员