【实用书】Python文本分析第二版,688页pdf带你入门自然语言处理

2020 年 5 月 15 日 专知
【实用书】Python文本分析第二版,688页pdf带你入门自然语言处理

使用Python进行自然语言处理(NLP),学习如何设置健壮环境来执行文本分析。这第二版经历了一个重大的修改,并介绍了几个重要的变化和基于NLP的最新趋势的新主题。


您将了解如何在NLP中使用最新的、最先进的框架,以及机器学习和深度学习模型,用于Python支持的监督情感分析,以解决实际的案例研究。首先回顾Python中关于字符串和文本数据的NLP基础知识,然后讨论文本数据的工程表示方法,包括传统的统计模型和新的基于深度学习的嵌入模型。本文还讨论了解析和处理文本的改进技术和新方法。


文本摘要和主题模型已经全面修订,因此本书展示了如何在NIPS会议论文的兴趣数据集上下文中构建、调整和解释主题模型。此外,这本书涵盖了文本相似性技术与现实世界的电影推荐人的例子,以及情绪分析使用监督和非监督的技术。还有一章专门讨论语义分析,您将了解如何从头构建自己的命名实体识别(NER)系统。虽然该书的整体结构保持不变,但整个代码库、模块和章节都已更新到最新的Python 3。x版本。


你将学习

  • 理解NLP和文本的语法、语义和结构

  • 发现文本清理和功能工程

  • 回顾文本分类和文本聚类

  • 评估文本摘要和主题模型

  • 学习NLP的深度学习


这本书是给谁的

  • IT专业人员、数据分析师、开发人员、语言学专家、数据科学家和工程师,以及任何对语言学、分析和从文本数据中产生见解有浓厚兴趣的人。



专知便捷查看

便捷下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“P688” 可以获取Python文本分析第二版,688页pdf带你入门自然语言处理》专知下载链接索引

专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取5000+AI主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程资料和与专家交流咨询
点击“ 阅读原文 ”,了解使用 专知 ,查看获取5000+AI主题知识资源
登录查看更多
9

相关内容

通过这个紧凑的实用指南,开始使用Python进行数据分析。这本书包括三个练习和一个用正确的格式从Python代码中获取数据的案例研究。使用Python学习数据分析还可以帮助您使用分析发现数据中的意义,并展示如何可视化数据。

每一节课都尽可能是独立的,允许您根据需要插入和退出示例。如果您已经在使用Python进行数据分析,那么您会发现您希望知道如何使用Python来完成许多事情。然后,您可以将这些技术直接应用到您自己的项目中。

如果您不使用Python进行数据分析,那么本书从一开始就带您了解基础知识,为您在该主题中打下坚实的基础。当你阅读完这本书的时候,你会对如何使用Python进行数据分析有更好的理解。

你将学到什么

  • 从Python代码中获取数据
  • 准备数据及其格式
  • 找出数据的意义
  • 使用iPython可视化数据

这本书是给谁的

想学习使用Python进行数据分析的同学。建议您具有Python方面的经验,但不是必需的,因为您需要具有数据分析或数据科学方面的经验。

成为VIP会员查看完整内容
0
128

介绍

这本书在保持非常务实的教导和结果导向付出很大的精力。构建聊天机器人不只是完成一个教程或遵循几个步骤,它本身就是一种技能。这本书肯定不会用大量的文本和过程让你感到无聊;相反,它采用的是边做边学的方法。到目前为止,在你的生活中,你肯定至少使用过一个聊天机器人。无论你是不是一个程序员,一旦你浏览这本书,你会发现构建模块的聊天机器人,所有的奥秘将被揭开。建立聊天机器人可能看起来很困难,但这本书将让你使它如此容易。我们的大脑不是用来直接处理复杂概念的;相反,我们一步一步地学习。当你读这本书的时候,从第一章到最后一章,你会发现事情的进展是多么的清晰。虽然你可以直接翻到任何一章,但我强烈建议你从第一章开始,因为它肯定会支持你的想法。这本书就像一个网络系列,你在读完一章之后就无法抗拒下一章的诱惑。在阅读完这本书后,你所接触到的任何聊天机器人都会在你的脑海中形成一幅关于聊天机器人内部是如何设计和构建的画面。

这本书适合谁?

这本书将作为学习与聊天机器人相关的概念和学习如何建立他们的一个完整的资源。那些将会发现这本书有用的包括: Python web开发人员希望扩大他们的知识或职业到聊天机器人开发。 学生和有抱负的程序员想获得一种新的技能通过亲身体验展示的东西,自然语言爱好者希望从头开始学习。 企业家如何构建一个聊天机器人的伟大的想法,但没有足够的技术关于如何制作聊天机器人的可行性信息。 产品/工程经理计划与聊天机器人相关项目。

如何使用这本书?

请记住,这本书的写作风格和其他书不一样。读这本书的时候要记住,一旦你完成了这本书,你就可以自己建造一个聊天机器人,或者教会别人如何建造一个聊天机器人。在像阅读其他书籍一样阅读这本书之前,务必记住以下几点:

  • 这本书涵盖了构建聊天机器人所需的几乎所有内容,而不是现有内容。
  • 这本书是关于花更多的时间在你的系统上做事情的,这本书就在你身边。确保您执行每个代码片段并尝试编写代码;不要复制粘贴。
  • 一定要按照书中的步骤去做;如果你不理解一些事情,不要担心。你将在本章的后面部分了解到。
  • 可以使用本书所提供的源代码及Jupyter NoteBook作为参考。

内容概要

  • Chapter 1: 在本章中,你将从商业和开发人员的角度了解与聊天机器人相关的事情。这一章为我们熟悉chatbots概念并将其转换为代码奠定了基础。希望在本章结束时,你会明白为什么你一定要为自己或你的公司创建一个聊天机器人。
  • Chapter 2: 在本章中会涉及聊天机器人的自然语言处理,你将学习到聊天机器人需要NLP时应该使用哪些工具和方法。这一章不仅教你在NLP的方法,而且还采取实际的例子和演示与编码的例子。本章还讨论了为什么使用特定的NLP方法可能需要在聊天机器人。注意,NLP本身就是一种技能。
  • Chapter 3: 在本章中,你将学习如何使用像Dialogflow这样的工具以一种友好而简单的方式构建聊天机器人。如果你不是程序员,你肯定会喜欢它,因为它几乎不需要编程技能。
  • Chapter 4:在本章中,你将学习如何以人们想要的方式构建聊天机器人。标题说的很艰难,但一旦你完成了前一章,你会想要更多,因为这一章将教如何建立内部聊天机器人从零开始,以及如何使用机器学习算法训练聊天机器人。
  • Chapter 5:在本章中,部署你的聊天机器人纯粹是设计给你的聊天机器人应用一个最后的推动。当你经历了创建聊天机器人的简单和艰难的过程后,你肯定不想把它留给自己。你将学习如何展示你的聊天机器人到世界使用Facebook和Slack,最后,整合他们在你自己的网站。
成为VIP会员查看完整内容
Building Chatbots with Python.pdf
0
125

有兴趣的数据科学专业人士可以通过本书学习Scikit-Learn图书馆以及机器学习的基本知识。本书结合了Anaconda Python发行版和流行的Scikit-Learn库,演示了广泛的有监督和无监督机器学习算法。通过用Python编写的清晰示例,您可以在家里自己的机器上试用和试验机器学习的原理。

所有的应用数学和编程技能需要掌握的内容,在这本书中涵盖。不需要深入的面向对象编程知识,因为工作和完整的例子被提供和解释。必要时,编码示例是深入和复杂的。它们也简洁、准确、完整,补充了介绍的机器学习概念。使用示例有助于建立必要的技能,以理解和应用复杂的机器学习算法。

对于那些在机器学习方面追求职业生涯的人来说,Scikit-Learn机器学习应用手册是一个很好的起点。学习这本书的学生将学习基本知识,这是胜任工作的先决条件。读者将接触到专门为数据科学专业人员设计的蟒蛇分布,并将在流行的Scikit-Learn库中构建技能,该库是Python世界中许多机器学习应用程序的基础。

你将学习

  • 使用Scikit-Learn中常见的简单和复杂数据集
  • 将数据操作为向量和矩阵,以进行算法处理
  • 熟悉数据科学中使用的蟒蛇分布
  • 应用带有分类器、回归器和降维的机器学习
  • 优化算法并为每个数据集找到最佳算法
  • 从CSV、JSON、Numpy和panda格式加载数据并保存为这些格式

这本书是给谁的

  • 有抱负的数据科学家渴望通过掌握底层的基础知识进入机器学习领域,而这些基础知识有时在急于提高生产力的过程中被忽略了。一些面向对象编程的知识和非常基本的线性代数应用将使学习更容易,尽管任何人都可以从这本书获益。
成为VIP会员查看完整内容
0
173

从设计和原型设计到测试、部署和维护,Python在许多方面都很有用,它一直是当今最流行的编程语言之一。这本实用的书的第三版提供了对语言的快速参考——包括Python 3.5、2.7和3.6的突出部分——它庞大的标准库中常用的区域,以及一些最有用的第三方模块和包。

本书非常适合具有一些Python经验的程序员,以及来自其他编程语言的程序员,它涵盖了广泛的应用领域,包括web和网络编程、XML处理、数据库交互和高速数字计算。了解Python如何提供优雅、简单、实用和强大功能的独特组合。

这个版本包括:

  • Python语法、面向对象的Python、标准库模块和第三方Python包
  • Python对文件和文本操作、持久性和数据库、并发执行和数值计算的支持
  • 网络基础、事件驱动编程和客户端网络协议模块
  • Python扩展模块,以及用于打包和分发扩展、模块和应用程序的工具
成为VIP会员查看完整内容
0
138

本书通过提供真实的案例研究和示例,为使用Python库进行机器学习提供了坚实的基础。它涵盖了诸如机器学习基础、Python入门、描述性分析和预测分析等主题。包括高级机器学习概念,如决策树学习、随机森林、增强、推荐系统和文本分析。这本书在理论理解和实际应用之间采取了一种平衡的方法。所有的主题都包括真实世界的例子,并提供如何探索、构建、评估和优化机器学习模型的逐步方法。

成为VIP会员查看完整内容
Machine Learning using Python by Manaranjan Pradhan.pdf
0
233
小贴士
相关VIP内容
专知会员服务
128+阅读 · 2020年6月29日
专知会员服务
94+阅读 · 2020年6月20日
专知会员服务
173+阅读 · 2020年6月10日
专知会员服务
104+阅读 · 2020年6月4日
专知会员服务
138+阅读 · 2020年5月21日
【干货书】机器学习Python实战教程,366页pdf
专知会员服务
233+阅读 · 2020年3月17日
相关论文
Context-aware Neural-based Dialog Act Classification on Automatically Generated Transcriptions
Daniel Ortega,Chia-Yu Li,Gisela Vallejo,Pavel Denisov,Ngoc Thang Vu
3+阅读 · 2019年2月28日
Yu Cheng,Mo Yu,Xiaoxiao Guo,Bowen Zhou
12+阅读 · 2019年1月26日
Marek Rei,Anders Søgaard
3+阅读 · 2018年11月14日
Antoine J. -P. Tixier
10+阅读 · 2018年8月30日
Reza Ghaeini,Xiaoli Z. Fern,Hamed Shahbazi,Prasad Tadepalli
4+阅读 · 2018年6月1日
Jeremy Howard,Sebastian Ruder
3+阅读 · 2018年5月23日
Chaitanya Malaviya,Pedro Ferreira,André F. T. Martins
4+阅读 · 2018年5月21日
Amritanshu Agrawal,Wei Fu,Tim Menzies
3+阅读 · 2018年2月20日
Nan Li,Tianli Liao
4+阅读 · 2018年2月13日
Kai Song,Yue Zhang,Min Zhang,Weihua Luo
4+阅读 · 2018年1月11日
Top