使用Python进行自然语言处理(NLP),学习如何设置健壮环境来执行文本分析。这第二版经历了一个重大的修改,并介绍了几个重要的变化和基于NLP的最新趋势的新主题。
您将了解如何在NLP中使用最新的、最先进的框架,以及机器学习和深度学习模型,用于Python支持的监督情感分析,以解决实际的案例研究。首先回顾Python中关于字符串和文本数据的NLP基础知识,然后讨论文本数据的工程表示方法,包括传统的统计模型和新的基于深度学习的嵌入模型。本文还讨论了解析和处理文本的改进技术和新方法。
文本摘要和主题模型已经全面修订,因此本书展示了如何在NIPS会议论文的兴趣数据集上下文中构建、调整和解释主题模型。此外,这本书涵盖了文本相似性技术与现实世界的电影推荐人的例子,以及情绪分析使用监督和非监督的技术。还有一章专门讨论语义分析,您将了解如何从头构建自己的命名实体识别(NER)系统。虽然该书的整体结构保持不变,但整个代码库、模块和章节都已更新到最新的Python 3。x版本。
你将学习
这本书是给谁的