学习视觉相似度对于各种视觉任务至关重要,如图像聚类、人脸检测或图像检索,从而为日常应用奠定基础,如智能手机上的图像集合的智能排列、浏览器中的网络规模的图像搜索或在线购物时推荐产品。今天,学习捕捉相似度的视觉表示的主要方法是深度度量学习,它专门针对从新颖的、看不见的类中检索对象和图像。此外,相似性学习与对比学习密切相关,对比学习是自监督学习的主导方法,分别是迁移学习。
在本教程中,我们将深入介绍深度度量学习(DML)的领先学习范式,以及如何实际评估其(超出分布)泛化的未来方向。具体来说,本教程将涵盖以下主题: (i) DML目标函数的概况,(ii)先进的和上下文相关的DML公式,(iii) DML中数据采样的重要性,(iv)公平和现实地评估DML方法的最佳实践,最后,(v)我们将DML与计算机视觉和模式识别的相关领域联系起来,如对比学习,少样本学习,迁移学习和人脸识别。