【CVPR2022】语言引导与基于视觉的深度度量学习的集成

2022 年 3 月 17 日 专知


深度度量学习(Deep Metric Learning, DML)提出学习度量空间,将语义相似性编码为嵌入空间距离。这些空间应该可以转移到训练期间看到的类别之外。通常,DML方法使用任务网络来解决在二元类分配上定义的对比排序任务。然而,这种方法忽略了实际类之间的高级语义关系。这导致学习后的嵌入空间编码不完整的语义上下文,并歪曲类之间的语义关系,影响了学习后的度量空间的泛化性。为了解决这一问题,我们提出了一种视觉相似度学习的语言指导目标。利用专家类名和伪类名的语言嵌入,我们根据有意义的语言语义对视觉表示空间进行上下文化和重新对齐,以获得更好的语义一致性。大量的实验和消融为我们提出的方法提供了强大的动力,并显示语言指导为DML提供了显著的、模型无关的改进,在所有基准上实现了具有竞争力的和最先进的结果。代码可在

https://github.com/ExplainableML/LanguageGuidance_for_DML获得。


专知便捷查看

便捷下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“LGDM” 就可以获取【CVPR2022】语言引导与基于视觉的深度度量学习的集成》专知下载链接

请扫码加入专知人工智能群(长按二维码),或者加专知小助手微信(zhuanzhi02),加入专知主题群(请备注主题类型:AI、NLP、CV、 KG、论文等)交流~

专知,专业可信的人工智能知识分发 ,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取70000+AI主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程资料和与专家交流咨询
点击“ 阅读原文 ”,了解使用 专知 ,查看获取70000+AI主题知识资源
登录查看更多
3

相关内容

【CVPR2022】UniVIP:自监督视觉预训练的统一框架
专知会员服务
28+阅读 · 2022年3月16日
【CVPR2022】三元组对比学习的视觉-语言预训练
专知会员服务
32+阅读 · 2022年3月3日
【ICLR2021】自监督蒸馏学习视觉表示
专知会员服务
34+阅读 · 2021年4月14日
专知会员服务
63+阅读 · 2021年3月12日
【CVPR2021】基于反事实推断的视觉问答框架
专知会员服务
27+阅读 · 2021年3月4日
【ACMMM2020】零样本语义分割的上下文感知特征生成
专知会员服务
16+阅读 · 2020年8月21日
【CVPR2020-Oral】用于深度网络的任务感知超参数
专知会员服务
28+阅读 · 2020年5月25日
【CVPR2022】双曲图像分割
专知
2+阅读 · 2022年3月14日
【ICLR2021】自监督蒸馏学习视觉表示
专知
1+阅读 · 2021年4月14日
【CVPR2021】空间一致性表示学习
专知
0+阅读 · 2021年3月12日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
VIP会员
相关VIP内容
【CVPR2022】UniVIP:自监督视觉预训练的统一框架
专知会员服务
28+阅读 · 2022年3月16日
【CVPR2022】三元组对比学习的视觉-语言预训练
专知会员服务
32+阅读 · 2022年3月3日
【ICLR2021】自监督蒸馏学习视觉表示
专知会员服务
34+阅读 · 2021年4月14日
专知会员服务
63+阅读 · 2021年3月12日
【CVPR2021】基于反事实推断的视觉问答框架
专知会员服务
27+阅读 · 2021年3月4日
【ACMMM2020】零样本语义分割的上下文感知特征生成
专知会员服务
16+阅读 · 2020年8月21日
【CVPR2020-Oral】用于深度网络的任务感知超参数
专知会员服务
28+阅读 · 2020年5月25日
相关资讯
相关基金
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员