OpenAI强化学习实战

2018 年 5 月 14 日 炼数成金订阅号

在过去的几年里,强化学习(RL,Reinforcement Learning)在很多方面取得了突破。DeepMind公司将深度学习与增强学习结合在一起,在众多的Atari游戏中来取得超越人类的表现,基于深度学习和强化学习训练得到的AlphaGo Zero更是完全从零开始,仅通过自我对弈就能天下无敌。虽然RL目前在许多游戏环境中都表现很出色,但它对解决需要最优决策和效率的问题而言是种全新方法,而且肯定会在机器智能中发挥作用。


OpenAI成立于2015年底,是一个非营利组织。它的目的是“建立安全的人工通用智能(AGI),并确保AGI的福利被尽可能广泛和均匀地分布”。除了探索关于AGI的诸多问题之外,OpenAI对机器学习世界的一个主要贡献是开发了Gym和Universe软件平台。


Gym是为测试和开发RL算法而设计的环境/任务的集合。它让用户不必再创建复杂的环境。Gym用Python编写,它有很多的环境,比如机器人模拟或Atari 游戏。它还提供了一个在线排行榜,供人们比较结果和代码。


课程大纲:

第1周 强化学习与常用的仿真环境平台介绍(MuJoCo, OpenAI Gym, rllab, DeepMind Lab, TORCS, PySC2等)

第2周 OpenAI gym中的常用仿真环境介绍,包括Atari 2600 游戏系列、MuJoCo 物理模拟器、Toy text 文本环境、Robotics机械手与机械臂模拟器等

第3周 马尔科夫决策过程MDP

第4周 基于gym的MDP实例讲解,基于OpenAI Gym构建股票市场交易环境

第5周 基于gym的强化学习实践:基于值函数的强化学习方法实现;基于策略梯度的强化学习方法实现

第6周 虚拟环境Universe: 一个用于训练解决通用问题 AI 的基础架构

第7周 基于Universe的强化学习实践:用OpenAI公司的Gym工具库和Universe平台为游戏创建人工智能机器人


开课时间:

本期课程将于6月9日开课,预计课程持续时间为9周


目标人群:

有简单的强化学习基础,希望学习强化学习的落地实现的同学


课程环境:

python3+OpenAI GYM+OpenAI Universe


收获预期:

学习结束后均能自己动手编写一个仿真环境,训练强化学习


授课讲师:

何翠仪  毕业于中山大学统计学专业,炼数成金专职讲师。

在炼数成金上开设了多门关于数据分析与数据挖掘相关的课程,如《大数据的统计学基础》、《大数据的矩阵基础》《金融时间序列分析》等,也曾到不同的公司开展R语言与数据分析的相关培训。对数据分析有深刻认识,曾与不同领域公司合作,参与到多个数据分析的项目中,如华为、广州地铁等


点击下方二维码或阅读原文报名课程:

登录查看更多
9

相关内容

OpenAI,由诸多硅谷大亨联合建立的人工智能非营利组织。2015年马斯克与其他硅谷科技大亨进行连续对话后,决定共同创建OpenAI,希望能够预防人工智能的灾难性影响,推动人工智能发挥积极作用。特斯拉电动汽车公司与美国太空技术探索公司SpaceX创始人马斯克、Y Combinator总裁阿尔特曼、天使投资人彼得·泰尔(Peter Thiel)以及其他硅谷巨头去年12月份承诺向OpenAI注资10亿美元。
【ICML2020】用于强化学习的对比无监督表示嵌入
专知会员服务
27+阅读 · 2020年7月6日
【圣经书】《强化学习导论(2nd)》电子书与代码,548页pdf
专知会员服务
201+阅读 · 2020年5月22日
《强化学习》简介小册,24页pdf
专知会员服务
272+阅读 · 2020年4月19日
【干货书】机器学习Python实战教程,366页pdf
专知会员服务
340+阅读 · 2020年3月17日
《强化学习—使用 Open AI、TensorFlow和Keras实现》174页pdf
专知会员服务
136+阅读 · 2020年3月1日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【强化学习】深度强化学习初学者指南
专知会员服务
179+阅读 · 2019年12月14日
关于强化学习(附代码,练习和解答)
深度学习
36+阅读 · 2018年1月30日
Seq2seq强化学习实战 (Pytorch, Tensorflow, Theano)
专知
15+阅读 · 2018年1月16日
【强化学习】强化学习+深度学习=人工智能
产业智能官
53+阅读 · 2017年8月11日
How to Fine-Tune BERT for Text Classification?
Arxiv
13+阅读 · 2019年5月14日
Arxiv
18+阅读 · 2019年1月16日
Arxiv
3+阅读 · 2018年10月5日
Image Captioning based on Deep Reinforcement Learning
Arxiv
22+阅读 · 2018年8月30日
Arxiv
8+阅读 · 2018年5月15日
Arxiv
11+阅读 · 2018年4月25日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关VIP内容
【ICML2020】用于强化学习的对比无监督表示嵌入
专知会员服务
27+阅读 · 2020年7月6日
【圣经书】《强化学习导论(2nd)》电子书与代码,548页pdf
专知会员服务
201+阅读 · 2020年5月22日
《强化学习》简介小册,24页pdf
专知会员服务
272+阅读 · 2020年4月19日
【干货书】机器学习Python实战教程,366页pdf
专知会员服务
340+阅读 · 2020年3月17日
《强化学习—使用 Open AI、TensorFlow和Keras实现》174页pdf
专知会员服务
136+阅读 · 2020年3月1日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【强化学习】深度强化学习初学者指南
专知会员服务
179+阅读 · 2019年12月14日
相关论文
How to Fine-Tune BERT for Text Classification?
Arxiv
13+阅读 · 2019年5月14日
Arxiv
18+阅读 · 2019年1月16日
Arxiv
3+阅读 · 2018年10月5日
Image Captioning based on Deep Reinforcement Learning
Arxiv
22+阅读 · 2018年8月30日
Arxiv
8+阅读 · 2018年5月15日
Arxiv
11+阅读 · 2018年4月25日
Arxiv
6+阅读 · 2018年4月24日
Top
微信扫码咨询专知VIP会员