本课程的教材是从机器学习的角度写的,是为那些有必要先决条件并对学习因果关系基础感兴趣的人而开设的。我尽我最大的努力整合来自许多不同领域的见解,利用因果推理,如流行病学、经济学、政治学、机器学习等。

有几个主要的主题贯穿全课程。这些主题主要是对两个不同类别的比较。当你阅读的时候,很重要的一点是你要明白书的不同部分适合什么类别,不适合什么类别。

统计与因果。即使有无限多的数据,我们有时也无法计算一些因果量。相比之下,很多统计是关于在有限样本中解决不确定性的。当给定无限数据时,没有不确定性。然而,关联,一个统计概念,不是因果关系。在因果推理方面还有更多的工作要做,即使在开始使用无限数据之后也是如此。这是激发因果推理的主要区别。我们在这一章已经做了这样的区分,并将在整本书中继续做这样的区分。

识别与评估。因果效应的识别是因果推论所独有的。这是一个有待解决的问题,即使我们有无限的数据。然而,因果推理也与传统统计和机器学习共享估计。我们将主要从识别因果效应(在第2章中,4和6)之前估计因果效应(第7章)。例外是2.5节和节4.6.2,我们进行完整的例子估计给你的整个过程是什么样子。

介入与观察。如果我们能进行干预/实验,因果效应的识别就相对容易了。这很简单,因为我们可以采取我们想要衡量因果效应的行动,并简单地衡量我们采取行动后的效果。观测数据变得更加复杂,因为数据中几乎总是引入混杂。

假设。将会有一个很大的焦点是我们用什么假设来得到我们得到的结果。每个假设都有自己的框来帮助人们注意到它。清晰的假设应该使我们很容易看到对给定的因果分析或因果模型的批评。他们希望,清晰地提出假设将导致对因果关系的更清晰的讨论。

成为VIP会员查看完整内容
0
98

相关内容

这是一本关于理论计算机科学的本科入门课程的教科书。这本书的教育目的是传达以下信息:

• 这种计算出现在各种自然和人为系统中,而不仅仅是现代的硅基计算机中。 • 类似地,除了作为一个极其重要的工具,计算也作为一个有用的镜头来描述自然,物理,数学,甚至社会概念。 • 许多不同计算模型的普遍性概念,以及代码和数据之间的二元性相关概念。 • 一个人可以精确地定义一个计算的数学模型,然后用它来证明(有时只是猜测)下界和不可能的结果。 • 现代理论计算机科学的一些令人惊讶的结果和发现,包括np完备性的流行、交互作用的力量、一方面的随机性的力量和另一方面的去随机化的可能性、在密码学中“为好的”使用硬度的能力,以及量子计算的迷人可能性。

成为VIP会员查看完整内容
0
72

http://www.math.arizona.edu/∼hzhang/math574.html

随着信息技术的飞速发展,在各个领域产生了大量的科学和商业数据。例如,人类基因组数据库项目已经收集了千兆字节的人类遗传密码数据。万维网提供了另一个例子,它拥有由数百万人使用的文本和多媒体信息组成的数十亿Web页面。

本课程涵盖了现代数据科学技术,包括基本的统计学习理论及其应用。将介绍各种数据挖掘方法、算法和软件工具,重点在概念和计算方面。将涵盖生物信息学、基因组学、文本挖掘、社交网络等方面的应用。

本课程着重于现代机器学习的统计分析、方法论和理论。它是为学生谁想要实践先进的机器学习工具和算法,也了解理论原理和统计性质的算法。主题包括回归、分类、聚类、降维和高维分析。

成为VIP会员查看完整内容
0
49

有几个主要的主题贯穿全书。这些主题主要是对两个不同类别的比较。当你阅读的时候,很重要的一点是你要明白书的不同部分适合什么类别,不适合什么类别。

统计与因果。即使有无限多的数据,我们有时也无法计算一些因果量。相比之下,很多统计是关于在有限样本中解决不确定性的。当给定无限数据时,没有不确定性。然而,关联,一个统计概念,不是因果关系。在因果推理方面还有更多的工作要做,即使在开始使用无限数据之后也是如此。这是激发因果推理的主要区别。我们在这一章已经做了这样的区分,并将在整本书中继续做这样的区分。

识别与评估。因果效应的识别是因果推论所独有的。这是一个有待解决的问题,即使我们有无限的数据。然而,因果推理也与传统统计和机器学习共享估计。我们将主要从识别因果效应(在第2章中,4和6)之前估计因果效应(第7章)。例外是2.5节和节4.6.2,我们进行完整的例子估计给你的整个过程是什么样子。

介入与观察。如果我们能进行干预/实验,因果效应的识别就相对容易了。这很简单,因为我们可以采取我们想要衡量因果效应的行动,并简单地衡量我们采取行动后的效果。观测数据变得更加复杂,因为数据中几乎总是引入混杂。

假设。将会有一个很大的焦点是我们用什么假设来得到我们得到的结果。每个假设都有自己的框来帮助人们注意到它。清晰的假设应该使我们很容易看到对给定的因果分析或因果模型的批评。他们希望,清晰地提出假设将导致对因果关系的更清晰的讨论。

https://www.bradyneal.com/causal-inference-course

成为VIP会员查看完整内容
0
147

摘要:这项工作考虑了这样一个问题: 获取大量数据的便利程度如何影响我们学习因果效应和关系的能力。在大数据时代,学习因果关系与传统因果关系有哪些不同或相同之处?为了回答这个问题,这项综述提供了一个在因果关系和机器学习之间联系的全面和结构化的回顾。

https://www.zhuanzhi.ai/paper/6ad7902913e98bd48540a5596b978edc

因果性是结果与引起结果的原因之间的一种一般性关系。它很难定义,而且我们通常只凭直觉知道原因和结果。因为下雨,街道是湿的。因为这个学生不学习,所以他考试考得很差。因为烤箱是热的,奶酪在披萨上融化了。当用数据学习因果关系时,我们需要意识到统计关联和因果之间的区别。例如,当天气炎热时,一家冰淇淋店的老板可能会注意到高昂的电费和较高的销售额。因此,她会观察到电费和销售数字之间有很强的联系,但电费并不是导致高销售额的原因——让商店的灯彻夜开着不会对销售产生影响。在这种情况下,外部温度是高电费和高销售额的共同原因,我们说它是一个混乱的因果关系。

学习因果关系的能力被认为是人类水平智能的重要组成部分,可以作为AI的基础(Pearl, 2018)。从历史上看,学习因果关系已经在包括教育在内的许多高影响领域被研究过(LaLonde, 1986;Dehejia和Wahba, 1999年;Heckerman et al ., 2006;希尔,2011),医学科学(马尼和库珀,2000;经济学(Imbens, 2004)、流行病学(Hernan et al., 2000;Robins等人,2000年;、气象学(Ebert-Uphoff和Deng, 2012)和环境卫生(Li et al., 2014)。受限于数据量,坚实的先验因果知识是学习因果关系所必需的。研究人员对通过精心设计的实验收集的数据进行研究,坚实的先验因果知识至关重要(Heckerman et al., 2006)。以随机对照试验的原型为例(Cook et al., 2002),为了研究一种药物的疗效,患者将被随机分配服用或不服用该药物,这将保证平均而言,治疗组和未治疗组(对照组)在所有相关方面是等同的,排除任何其他因素的影响。然后,药物对某些健康结果的影响——比如,偏头痛的持续时间——可以通过比较两组的平均结果来衡量。

这个综述的目的是考虑在现在的大数据时代学习因果关系的新可能性和挑战,这里指的是海量数据集的可用性。举个例子,考虑到无法测量的混杂因素的可能性——可能会被减轻,因为可以测量更多的特征。因此,一方面,研究人员有可能在大数据的帮助下回答有趣的因果问题。例如,Yelp的正面评论是促使顾客去餐馆,还是仅仅反映了受欢迎程度而没有影响?这个因果问题可以通过Yelp维护的庞大数据库中的数据来解决。另一方面,用大数据来回答因果问题,会带来一些独特的新问题。例如,尽管公共数据库或通过web爬行收集的数据或应用程序编程接口(api)是空前巨大的,我们有很少的直觉对什么类型的偏差数据集可以遭受——数据更丰富,也更神秘,因此,负责任地更难模型。与此同时,大数据给其他学习任务(如预测)带来的基本统计困难,使得因果调查更具挑战性。也许这方面最显著的例子是现代数据的高维性(Li et al., 2017a),比如文本数据(Imai et al., 2013)。

成为VIP会员查看完整内容
0
97

这本书的第五版继续讲述如何运用概率论来深入了解真实日常的统计问题。这本书是为工程、计算机科学、数学、统计和自然科学的学生编写的统计学、概率论和统计的入门课程。因此,它假定有基本的微积分知识。

第一章介绍了统计学的简要介绍,介绍了它的两个分支:描述统计学和推理统计学,以及这门学科的简短历史和一些人,他们的早期工作为今天的工作提供了基础。

第二章将讨论描述性统计的主题。本章展示了描述数据集的图表和表格,以及用于总结数据集某些关键属性的数量。

为了能够从数据中得出结论,有必要了解数据的来源。例如,人们常常假定这些数据是来自某个总体的“随机样本”。为了确切地理解这意味着什么,以及它的结果对于将样本数据的性质与整个总体的性质联系起来有什么意义,有必要对概率有一些了解,这就是第三章的主题。本章介绍了概率实验的思想,解释了事件概率的概念,并给出了概率的公理。

我们在第四章继续研究概率,它处理随机变量和期望的重要概念,在第五章,考虑一些在应用中经常发生的特殊类型的随机变量。给出了二项式、泊松、超几何、正规、均匀、伽玛、卡方、t和F等随机变量。

成为VIP会员查看完整内容
2
141

对因果推理的简明和自成体系的介绍,在数据科学和机器学习中越来越重要。

因果关系的数学化是一个相对较新的发展,在数据科学和机器学习中变得越来越重要。这本书提供了一个独立的和简明的介绍因果模型和如何学习他们的数据。在解释因果模型的必要性,讨论潜在的因果推论的一些原则,这本书教读者如何使用因果模型:如何计算干预分布,如何从观测推断因果模型和介入的数据,和如何利用因果思想经典的机器学习问题。所有这些主题都将首先以两个变量的形式进行讨论,然后在更一般的多元情况下进行讨论。对于因果学习来说,二元情况是一个特别困难的问题,因为经典方法中用于解决多元情况的条件独立不存在。作者认为分析因果之间的统计不对称是非常有意义的,他们报告了他们对这个问题十年来的深入研究。

本书对具有机器学习或统计学背景的读者开放,可用于研究生课程或作为研究人员的参考。文本包括可以复制和粘贴的代码片段、练习和附录,其中包括最重要的技术概念摘要。

首先,本书主要研究因果关系推理子问题,这可能被认为是最基本和最不现实的。这是一个因果问题,需要分析的系统只包含两个可观测值。在过去十年中,作者对这个问题进行了较为详细的研究。本书整理这方面的大部分工作,并试图将其嵌入到作者认为对研究因果关系推理问题的选择性至关重要的更大背景中。尽管先研究二元(bivariate)案例可能有指导意义,但按照章节顺序,也可以直接开始阅读多元(multivariate)章节;见图一。

第二,本书提出的解决方法来源于机器学习和计算统计领域的技术。作者对其中的方法如何有助于因果结构的推断更感兴趣,以及因果推理是否能告诉我们应该如何进行机器学习。事实上,如果我们不把概率分布描述的随机实验作为出发点,而是考虑分布背后的因果结构,机器学习的一些最深刻的开放性问题就能得到最好的理解。
成为VIP会员查看完整内容
0
317
小贴士
相关主题
相关VIP内容
专知会员服务
72+阅读 · 2020年9月17日
专知会员服务
49+阅读 · 2020年8月30日
专知会员服务
147+阅读 · 2020年8月25日
专知会员服务
141+阅读 · 2020年7月28日
专知会员服务
125+阅读 · 2020年5月22日
相关论文
Charis Chalkiadakis,Dimitris Tzanis,Evangelos Mitsakis
0+阅读 · 2020年10月14日
Nicolò Pagliana,Alessandro Rudi,Ernesto De Vito,Lorenzo Rosasco
0+阅读 · 2020年10月11日
Wen Shen,Binbin Zhang,Shikun Huang,Zhihua Wei,Quanshi Zhang
0+阅读 · 2020年10月11日
Xiaohua Zhai,Avital Oliver,Alexander Kolesnikov,Lucas Beyer
4+阅读 · 2019年5月9日
Tianyi Zhang,Varsha Kishore,Felix Wu,Kilian Q. Weinberger,Yoav Artzi
5+阅读 · 2019年4月21日
Vinicius Zambaldi,David Raposo,Adam Santoro,Victor Bapst,Yujia Li,Igor Babuschkin,Karl Tuyls,David Reichert,Timothy Lillicrap,Edward Lockhart,Murray Shanahan,Victoria Langston,Razvan Pascanu,Matthew Botvinick,Oriol Vinyals,Peter Battaglia
4+阅读 · 2018年6月5日
Simon Gottschalk,Elena Demidova
9+阅读 · 2018年4月12日
João Oliveira,Mike Pinto,Pedro Saleiro,Jorge Teixeira
3+阅读 · 2018年1月23日
Top