论文专栏: KDD2020知识图谱相关论文分享

论文解读者: 北邮 GAMMA Lab 博士生 马昂

题目: 基于动态知识图谱的多事件预测

会议: KDD 2020

论文地址: https://dl.acm.org/doi/10.1145/3394486.3403209

推荐理由: 从开源社交传感器对多种类型的并发事件及其参与者进行建模是许多领域的重要任务,例如,医疗保健,救灾和财务分析。事件预测可以帮助人类了解动态并做出快速而准确的决策。预期可能参与这些活动的参与者也可以帮助利益相关者更好地应对意外事件。在本文中,作者首先利用GCN和CompGCN对Temporal Event Graph 和 Temporal Word Graph进行建模,学习节点表示。其次,基于Attention机制,对Temporal Event Graph和Temporal Word Graph的节点表示进行融合。最后,利用RNN,对时间信息进行编码,完成事件预测和事件参与者预测任务。在数据集ICEWS上进行了实验,结果表明,该方法优于目前用于社会事件预测的最新方法,并且该方法还具备可解释性。

成为VIP会员查看完整内容
57

相关内容

【WSDM2021】基于演化状态图的时间序列事件预测
专知会员服务
53+阅读 · 2020年12月1日
专知会员服务
37+阅读 · 2020年11月24日
【KDD2020】 鲁棒的跨语言知识图谱实体对齐
专知会员服务
26+阅读 · 2020年9月10日
【KDD2020】动态知识图谱的多事件预测
专知会员服务
127+阅读 · 2020年8月30日
如何建模动态图?看这份《时序图神经网络》26页ppt
专知会员服务
139+阅读 · 2020年7月25日
【KDD2020】动态知识图谱的多事件预测
专知
88+阅读 · 2020年8月31日
赛尔原创 | EMNLP 2019 常识信息增强的事件表示学习
哈工大SCIR
28+阅读 · 2019年9月12日
HAN:基于双层注意力机制的异质图深度神经网络
PaperWeekly
36+阅读 · 2019年4月23日
动态知识图谱补全论文合集
专知
60+阅读 · 2019年4月18日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
Arxiv
15+阅读 · 2020年2月5日
Arxiv
9+阅读 · 2019年11月6日
Arxiv
9+阅读 · 2018年5月24日
VIP会员
相关VIP内容
微信扫码咨询专知VIP会员