【斯坦福CS520】向量空间中嵌入的知识图谱推理,48页ppt

2020 年 6 月 11 日 专知
【斯坦福CS520】向量空间中嵌入的知识图谱推理,48页ppt

回答大规模知识图谱上的复杂逻辑查询是一项基本而又具有挑战性的任务。在本文中,我将概述如何使用向量空间嵌入在知识图谱中执行逻辑推理。首先,我将讨论预测一对实体之间关系的知识图谱补全方法:通过捕获与实体相邻的关系类型来考虑每个实体的关系上下文,并通过一种新的基于边的消息传递方案进行建模;考虑关系路径捕获两个实体之间的所有路径;通过一种可学习的注意力机制,自适应地整合关系上下文和关系路径。其次,我们还将讨论QUERY2BOX,这是一个基于嵌入的框架,用于推理使用and、or和存在操作符进行的大量且不完整的KGs中的任意查询。

https://cs.stanford.edu/people/jure/



专知便捷查看

便捷下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“KG48” 可以获取《向量空间中嵌入的知识图谱,48页ppt推理》专知下载链接索引

专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取5000+AI主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程资料和与专家交流咨询
点击“阅读原文”,了解使用专知,查看获取5000+AI主题知识资源
登录查看更多
16

相关内容

知识图谱补全的目的是预测知识图谱中实体之间的缺失关系。虽然已经提出了许多不同的方法,但缺乏一个统一的框架产生SOTA的结果。在这里,我们开发了PathCon,这是一种知识图谱补全方法,它利用四个新颖的见解来超越现有的方法。PathCon通过以下方法预测一对实体之间的关系: (1)通过捕获实体附近的关系类型,并通过基于边缘的消息传递模式建模,来考虑每个实体的关系上下文; (2)考虑获取两个实体之间所有路径的关系路径; (3)通过可学习的注意力机制,自适应地整合关系上下文和关系路径。重要的是,与传统的基于节点的表示不同,PathCon仅使用关系类型表示上下文和路径,这使得它适用于归纳设置。在知识图谱基准上的实验结果以及我们新提出的数据集表明,PathCon在很大程度上优于最先进的知识图谱补全方法。最后,PathCon能够通过识别对给定的预测关系很重要的上下文和路径关系来提供可解释的说明。

成为VIP会员查看完整内容
0
78
小贴士
相关VIP内容
一份循环神经网络RNNs简明教程,37页ppt
专知会员服务
104+阅读 · 2020年5月6日
相关论文
Hongming Zhang,Daniel Khashabi,Yangqiu Song,Dan Roth
7+阅读 · 2020年5月1日
Suyu Ge,Chuhan Wu,Fangzhao Wu,Tao Qi,Yongfeng Huang
19+阅读 · 2020年3月31日
KagNet: Knowledge-Aware Graph Networks for Commonsense Reasoning
Bill Yuchen Lin,Xinyue Chen,Jamin Chen,Xiang Ren
7+阅读 · 2019年9月4日
Logic Rules Powered Knowledge Graph Embedding
Pengwei Wang,Dejing Dou,Fangzhao Wu,Nisansa de Silva,Lianwen Jin
6+阅读 · 2019年3月9日
dynnode2vec: Scalable Dynamic Network Embedding
Sedigheh Mahdavi,Shima Khoshraftar,Aijun An
9+阅读 · 2018年12月6日
Peifeng Wang,Jialong Han,Chenliang Li,Rong Pan
7+阅读 · 2018年11月4日
John D. Co-Reyes,YuXuan Liu,Abhishek Gupta,Benjamin Eysenbach,Pieter Abbeel,Sergey Levine
6+阅读 · 2018年6月7日
Zhongyang Li,Xiao Ding,Ting Liu
9+阅读 · 2018年5月16日
Wenhan Xiong,Thien Hoang,William Yang Wang
18+阅读 · 2018年1月8日
Top