计算机视觉在深度学习时代取得了快速的进步。这在很大程度上归功于大规模标记数据的可用性,加上GPU计算。然而,计算机视觉模型在一个领域上训练,比如白天的图像,通常不能泛化到新的领域,比如晚上获得的图像。为所有可能的场景标记数据是昂贵的,但是未标记的数据更容易获得。在本课程中,我们将学习无监督领域适应的概念,并应用于各种计算机视觉问题,如图像分类、语义分割、目标检测、人脸识别和三维重建。
本课程将涵盖领域适应的各种主题,包括:
这些方法将应用于计算机视觉中的几个问题,如:
http://cseweb.ucsd.edu/~mkchandraker/classes/CSE291/Winter2020/