计算机视觉在深度学习时代取得了快速的进步。这在很大程度上归功于大规模标记数据的可用性,加上GPU计算。然而,计算机视觉模型在一个领域上训练,比如白天的图像,通常不能泛化到新的领域,比如晚上获得的图像。为所有可能的场景标记数据是昂贵的,但是未标记的数据更容易获得。在本课程中,我们将学习无监督领域适应的概念,并应用于各种计算机视觉问题,如图像分类、语义分割、目标检测、人脸识别和三维重建。

本课程将涵盖领域适应的各种主题,包括:

  • 分布排列
  • 度量学习
  • 集成
  • 对抗学习
  • 生成式建模
  • 开集自适应
  • 域泛化
  • 公平

这些方法将应用于计算机视觉中的几个问题,如:

  • 图像分类
  • 语义分割
  • 对象检测
  • 人脸识别
  • 行人重识别
  • 视频理解

http://cseweb.ucsd.edu/~mkchandraker/classes/CSE291/Winter2020/

成为VIP会员查看完整内容
53

相关内容

领域自适应是与机器学习和转移学习相关的领域。 当我们的目标是从源数据分布中学习在不同(但相关)的目标数据分布上的良好性能模型时,就会出现这种情况。 例如,常见垃圾邮件过滤问题的任务之一在于使模型从一个用户(源分发)适应到接收显着不同的电子邮件(目标分发)的新模型。 注意,当有多个源分发可用时,该问题被称为多源域自适应。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
最新《生成式对抗网络》简介,25页ppt
专知会员服务
173+阅读 · 2020年6月28日
【牛津大学&DeepMind】自监督学习教程,141页ppt
专知会员服务
179+阅读 · 2020年5月29日
少标签数据学习,54页ppt
专知会员服务
197+阅读 · 2020年5月22日
斯坦福2020硬课《分布式算法与优化》
专知会员服务
118+阅读 · 2020年5月6日
Yann Lecun 纽约大学《深度学习(PyTorch)》课程(2020)PPT
专知会员服务
179+阅读 · 2020年3月16日
计算机视觉中深度迁移学习,165页PPT
专知
23+阅读 · 2019年8月18日
【CVPR2019】弱监督图像分类建模
深度学习大讲堂
38+阅读 · 2019年7月25日
CVPR 2019 Oral 论文解读 | 无监督域适应语义分割
AI科技评论
49+阅读 · 2019年5月29日
大讲堂 | 基于医疗知识的疾病诊断预测
AI科技评论
10+阅读 · 2019年1月22日
VALSE Webinar 19-01期 元学习专题研讨
VALSE
13+阅读 · 2018年12月27日
CVPR2018:基于时空模型无监督迁移学习的行人重识别
全球人工智能
7+阅读 · 2018年3月26日
干货|多重预训练视觉模型的迁移学习
全球人工智能
5+阅读 · 2017年12月19日
范式大学|迁移学习实战:从算法到实践
机器学习研究会
16+阅读 · 2017年8月9日
Deformable Style Transfer
Arxiv
14+阅读 · 2020年3月24日
Arxiv
5+阅读 · 2019年2月28日
Arxiv
3+阅读 · 2018年3月13日
Arxiv
7+阅读 · 2018年1月24日
Arxiv
4+阅读 · 2018年1月19日
VIP会员
相关资讯
计算机视觉中深度迁移学习,165页PPT
专知
23+阅读 · 2019年8月18日
【CVPR2019】弱监督图像分类建模
深度学习大讲堂
38+阅读 · 2019年7月25日
CVPR 2019 Oral 论文解读 | 无监督域适应语义分割
AI科技评论
49+阅读 · 2019年5月29日
大讲堂 | 基于医疗知识的疾病诊断预测
AI科技评论
10+阅读 · 2019年1月22日
VALSE Webinar 19-01期 元学习专题研讨
VALSE
13+阅读 · 2018年12月27日
CVPR2018:基于时空模型无监督迁移学习的行人重识别
全球人工智能
7+阅读 · 2018年3月26日
干货|多重预训练视觉模型的迁移学习
全球人工智能
5+阅读 · 2017年12月19日
范式大学|迁移学习实战:从算法到实践
机器学习研究会
16+阅读 · 2017年8月9日
微信扫码咨询专知VIP会员