【图灵奖得主Judea Pearl推荐新书】图模型(Graphical Models), 571页pdf,带你学习GM和因果推断

2019 年 9 月 26 日 专知
【图灵奖得主Judea Pearl推荐新书】图模型(Graphical Models), 571页pdf,带你学习GM和因果推断

【导读】图灵奖获得者Judea Pearl在Twitter推荐了一本新书《图模型手册》,他认为,这本书很好地刻写了图模型领域自20世纪80年代成立以来是如何发展的。由顶级统计学家编写,它可以作为传统统计学家很好的一个介绍因果模型的材料


这本书总共546页pdf,由苏黎世联邦理工学院、华盛顿大学、加州伯克利分校、哥本哈根大学四位教授主编,以及有30多位统计学家合作编著完成。

https://stat.ethz.ch/~maathuis/papers/


图书便捷下载:

请关注专知公众号(点击上方蓝色专知关注

  • 后台回复“HGM” 就可以获取《图模型手册》图书的下载链接~ 




图模型手册

前言:


图模型是与图相关联的统计模型。图中的节点对应感兴趣的随机变量,并且边缘编码变量之间允许的条件依赖关系。基于图模型的因数分解特性使多元分布的计算更加方便,使模型在大量应用中成为一个有价值的工具。此外,有向图模型承认直观的因果解释,并已成为因果推理的基石。


虽然有许多关于图模型的优秀书籍,但是这个领域已经发展得如此之多,以至于个别作者几乎无法涵盖它的全部范围。此外,这一领域的性质是跨学科的,有许多学科的重要贡献,包括统计学、计算机科学、电子工程、生物学、数学和哲学。


通过从这些不同领域的前沿研究人员的章节,这本手册提供了一个广泛的和可访问的技术状态概述。


全书共有二十一章,分为五个部分:

一、条件独立性与马尔可夫性质

二、用因子分布计算

三、统计推断

四、因果推论

五、应用


第一部分回顾了图模型的基础。它讨论了图如何编码随机变量之间的条件独立性,或者等价地,变量联合分布的因式分解。第二部分的主题是如何基于给定图模型的联合分布执行有效的计算,特别是通过利用相关的因子分解属性。在第三部分,本书的重点转移到统计推断的问题,如从现有的数据学习图表和估计相关参数。第四部分是有向无环图的因果解释。相应的章节回顾了因果推理的图形化方法的基本概念,并讨论了统计方面的问题,如学习a方向数据的非循环图。最后,第五部分介绍了图模型在法医学和生物学中的应用。


第一部分是本书的基础。其余部分II到V可以独立阅读,而章节之间的交叉引用突出了连接。本章的主题范围从解释基本概念的水平,这是适合新人的描述最近的发展或原始研究。因此,本书面向广泛的读者,包括统计学、数学和计算机科学的研究生、应用研究中图形模型的用户,以及图形模型方面的专家。最重要的是,我们希望这本书将在这个令人兴奋的领域引发进一步的研究。


我们衷心感谢所有作者的宝贵贡献,感谢Rob Calver和Lara Spieker对我们的帮助和指导的过程。


Marloes Maathuis

ETH Zurich

Mathias Drton 

University of Washington 

Steven Lauritzen 

University of Copenhagen 

Martin Wainwright 

University of California, Berkeley


图书目录:


引用参考:

M. Maathuis, M. Drton, S. Lauritzen and M. Wainwright (Eds) (2019). Handbook of Graphical Models. Chapman&Hall/CRC Handbooks of Modern Statistical Methods. CRC Press, Boca Raton, FL. ISBN: 978-1-4987-8862-5.



-END-

专 · 知


专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎登录www.zhuanzhi.ai,注册登录专知,获取更多AI知识资料!

欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程视频资料和与专家交流咨询

请加专知小助手微信(扫一扫如下二维码添加),加入专知人工智能主题群,咨询技术商务合作~

专知《深度学习:算法到实战》课程全部完成!560+位同学在学习,现在报名,限时优惠!网易云课堂人工智能畅销榜首位!

点击“阅读原文”,了解报名专知《深度学习:算法到实战》课程

登录查看更多
4

相关内容

图模型由点和线组成的用以描述系统的图形。图模型属于结构模型(见模型),可用于描述自然界和人类社会中的大量事物和事物之间的关系。在建模中采用图模型可利用图论作为工具。按图的性质进行分析为研究各种系统特别是复杂系统提供了一种有效的方法。构成图模型的图形不同于一般的几何图形。例如,它的每条边可以被赋以权,组成加权图。权可取一定数值,用以表示距离、流量、费用等。加权图可用于研究电网络、运输网络、通信网络以及运筹学中的一些重要课题。图模型广泛应用于自然科学、工程技术、社会经济和管理等方面。见动态结构图、信号流程图、计划协调技术、图解协调技术、风险协调技术、网络技术、网络理论。

【导读】《机器学习:贝叶斯和优化的视角》是雅典大学信息学和通信系的教授Sergios Theodoridis的经典著作,对所有主要的机器学习方法和新研究趋势进行了深入探索,涵盖概率和确定性方法以及贝叶斯推断方法。非常值得学习。

Sergios Theodoridis教授是雅典大学信息学和通信系的教授,香港中文大学(深圳)客座教授。他的研究领域是信号处理和机器学习。他的研究兴趣是自适应算法,分布式和稀疏性感知学习,机器学习和模式识别,生物医学应用中的信号处理和学习以及音频处理和检索。

他的几本著作与合著蜚声海内外,包括《机器学习:贝叶斯和优化的视角》以及畅销书籍《模式识别》。他是2017年EURASIP Athanasios Papoulis奖和2014年EURASIP Meritorious Service奖的获得者。

http://cgi.di.uoa.gr/~stheodor/

机器学习:贝叶斯和优化方法

本书对所有主要的机器学习方法和新研究趋势进行了深入探索,涵盖概率和确定性方法以及贝叶斯推断方法。其中,经典方法包括平均/小二乘滤波、卡尔曼滤波、随机逼近和在线学习、贝叶斯分类、决策树、逻辑回归和提升方法等,新趋势包括稀疏、凸分析与优化、在线分布式算法、RKH空间学习、贝叶斯推断、图模型与隐马尔可夫模型、粒子滤波、深度学习、字典学习和潜变量建模等。全书构建了一套明晰的机器学习知识体系,各章内容相对独立,物理推理、数学建模和算法实现精准且细致,并辅以应用实例和习题。本书适合该领域的科研人员和工程师阅读,也适合学习模式识别、统计/自适应信号处理和深度学习等课程的学生参考。

成为VIP会员查看完整内容
0
218

本书介绍了自由软件Python及其在统计数据分析中的应用。它涵盖了连续、离散和分类数据的常见统计测试,以及线性回归分析和生存分析和贝叶斯统计的主题。每个测试的Python解决方案的工作代码和数据,以及易于遵循的Python示例,可以被读者复制,并加强他们对主题的直接理解。随着Python生态系统的最新进展,Python已经成为科学计算的一种流行语言,为统计数据分析提供了一个强大的环境,并且是R的一个有趣的替代选择。本书面向硕士和博士学生,主要来自生命和医学科学,具有统计学的基本知识。由于该书还提供了一些统计方面的背景知识,因此任何想要执行统计数据分析的人都可以使用这本书。

成为VIP会员查看完整内容
0
69

对因果推理的简明和自成体系的介绍,在数据科学和机器学习中越来越重要。

因果关系的数学化是一个相对较新的发展,在数据科学和机器学习中变得越来越重要。这本书提供了一个独立的和简明的介绍因果模型和如何学习他们的数据。在解释因果模型的必要性,讨论潜在的因果推论的一些原则,这本书教读者如何使用因果模型:如何计算干预分布,如何从观测推断因果模型和介入的数据,和如何利用因果思想经典的机器学习问题。所有这些主题都将首先以两个变量的形式进行讨论,然后在更一般的多元情况下进行讨论。对于因果学习来说,二元情况是一个特别困难的问题,因为经典方法中用于解决多元情况的条件独立不存在。作者认为分析因果之间的统计不对称是非常有意义的,他们报告了他们对这个问题十年来的深入研究。

本书对具有机器学习或统计学背景的读者开放,可用于研究生课程或作为研究人员的参考。文本包括可以复制和粘贴的代码片段、练习和附录,其中包括最重要的技术概念摘要。

首先,本书主要研究因果关系推理子问题,这可能被认为是最基本和最不现实的。这是一个因果问题,需要分析的系统只包含两个可观测值。在过去十年中,作者对这个问题进行了较为详细的研究。本书整理这方面的大部分工作,并试图将其嵌入到作者认为对研究因果关系推理问题的选择性至关重要的更大背景中。尽管先研究二元(bivariate)案例可能有指导意义,但按照章节顺序,也可以直接开始阅读多元(multivariate)章节;见图一。

第二,本书提出的解决方法来源于机器学习和计算统计领域的技术。作者对其中的方法如何有助于因果结构的推断更感兴趣,以及因果推理是否能告诉我们应该如何进行机器学习。事实上,如果我们不把概率分布描述的随机实验作为出发点,而是考虑分布背后的因果结构,机器学习的一些最深刻的开放性问题就能得到最好的理解。
成为VIP会员查看完整内容
0
319

哈佛大学公共卫生学院(HSPH)Miguel Hernan与Jamie Robins 教授共同编著了关于因果逻辑推断方面的书作《因果推断:概念与方法》,总共分3个部分,21章,280多页,对因果推理的概念和方法做了系统性阐述,是各个领域包括经济学、健康医疗、心理学、计算机等从业人士的重要参鉴材料

我(Miguel Hernan)和同事杰米·罗宾斯(Jamie Robins)正在写一本书,书中对因果推理的概念和方法进行了连贯的介绍。目前,这些材料大多分散在几个学科的期刊上,或者局限于技术文章。我们希望这本书能引起任何对因果推理感兴趣的人的兴趣,例如流行病学家、统计学家、心理学家、经济学家、社会学家、政治学家、计算机科学家……这本书分为三个难度越来越大的部分:没有模型的因果推理、有模型的因果推理和复杂纵向数据的因果推理。

成为VIP会员查看完整内容
0
76

书籍介绍: 机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能。机器学习是人工智能及模式识别领域的共同研究热点,其理论和方法已被广泛应用于解决工程应用和科学领域的复杂问题。本书从机器学习的基础入手,分别讲述了分类、排序、降维、回归等机器学习任务,是入门机器学习的一本好书。

作者: Mehryar Mohri,是纽约大学库兰特数学科学研究所的计算机科学教授,也是Google Research的研究顾问。

大纲介绍:

  • 介绍
  • PAC学习框架
  • rademacher复杂度和VC维度
  • 支持向量机
  • 核方法
  • Boosting
  • 线上学习
  • 多类别分类
  • 排序
  • 回归
  • 算法稳定性
  • 降维
  • 强化学习

作者主页https://cs.nyu.edu/~mohri/

成为VIP会员查看完整内容
0
93
小贴士
相关VIP内容
专知会员服务
218+阅读 · 2020年6月8日
相关论文
Liuyi Yao,Zhixuan Chu,Sheng Li,Yaliang Li,Jing Gao,Aidong Zhang
78+阅读 · 2020年2月5日
Bernhard Schölkopf
10+阅读 · 2019年11月24日
Area Attention
Yang Li,Lukasz Kaiser,Samy Bengio,Si Si
5+阅读 · 2019年2月5日
A Probe into Understanding GAN and VAE models
Jingzhao Zhang,Lu Mi,Macheng Shen
6+阅读 · 2018年12月13日
Andreea Bobu,Andrea Bajcsy,Jaime F. Fisac,Anca D. Dragan
3+阅读 · 2018年10月11日
Stephen Bonner,Flavian Vasile
17+阅读 · 2018年8月3日
Generating Realistic Geology Conditioned on Physical Measurements with Generative Adversarial Networks
Emilien Dupont,Tuanfeng Zhang,Peter Tilke,Lin Liang,William Bailey
6+阅读 · 2018年7月5日
KiJung Yoon,Renjie Liao,Yuwen Xiong,Lisa Zhang,Ethan Fetaya,Raquel Urtasun,Richard Zemel,Xaq Pitkow
3+阅读 · 2018年5月25日
Zhongyang Li,Xiao Ding,Ting Liu
9+阅读 · 2018年5月16日
Jeremie Houssineau,Ajay Jasra,Sumeetpal S. Singh
3+阅读 · 2018年3月26日
Top