【UMD开放经典书】机器学习课程简明书,19章227页pdf,带你学习ML

2019 年 12 月 9 日 专知
【UMD开放经典书】机器学习课程简明书,19章227页pdf,带你学习ML

导读】机器学习是学习数据和经验的算法的研究。它被广泛应用于各种应用领域,从医学到广告,从军事到行人。任何需要理解数据的领域都是机器学习的潜在的消费者。《A Course in Machine Learning》属于入门级资料,它涵盖了现代机器学习的大多数主要方面(监督学习,无监督学习,大间隔方法,概率建模,学习理论等)。它的重点是具有严格基础的广泛应用


 地址:http://ciml.info/

             

 引言


1.1 关于本书


机器学习是一个广阔而迷人的领域。即使在今天,机器学习技术仍然在你的生活中占据了相当大的一部分,而且常常是在你不知情的情况下。在某种程度上,任何看似合理的人工智能方法都必须包括学习,如果不是为了别的原因,而是因为如果一个系统不能学习,那么它就很难被称为智能系统。机器学习本身也很吸引人,因为它提出了关于学习和成功完成任务的意义的哲学问题。
 
同时,机器学习也是一个非常广泛的领域,试图涵盖所有领域对于教学来说将是一场灾难。因为它发展得如此之快,以至于任何试图报道最新发展的书籍在上线之前都会过时。因此,本书有两个目标。 首先,要通俗地介绍一个非常深的领域是什么。 第二,为读者提供必要的技能,以便在新技术发展过程中掌握新技术
 

1.2 如何使用本书?

 

这本书被设计成线性阅读,因为它的目标不是一个通用的参考书。也就是说,一旦你读完了第5章,你几乎可以跳到任何地方。当我教授一学期的非研究生课程时,我通常会读完1-13章,有时会根据时间和兴趣跳过7、9、10或12章。对于以前没有机器学习背景的研究生课程,我会很快地从1-4页开始,然后覆盖剩下的部分,并增加一些额外的阅读。

  

1.3 为什么是另一个教科书?

 

这本书的目的是提供一个通俗的和教学组织的领域介绍。这与大多数现有的机器学习文本形成了对比,它们倾向于按主题组织内容,而不是按教学方法组织(米切尔的书是个例外,但不幸的是,米切尔1997年版的《自然》越来越过时了)。这对于该领域的研究人员来说是有意义的,但是对于学习者来说就没那么有意义了。这本书的第二个目标是提供一个机器学习的观点,它关注的是思想和模型,而不是数学。避免数学是不可能的(甚至是可取的)。但是数学应该帮助理解,而不是阻碍它。最后,本书试图将依赖关系降到最低,这样读者就可以很容易地挑选要读的章节。当依赖项存在时,它们列在本章的开头。这本书的读者是任何知道微分学和离散数学的人,并且可以很好地编程。(学一点线性代数和概率也无妨)一个在第四或第五学期的本科生应该完全能够理解这些材料。然而,它也应该适合一年级的研究生,也许以稍快的速度。

 

1.4 组织和辅助材料


有一个相关的web页面http://ciml.info/,其中包含该书的在线副本以及相关的代码和数据。它还包含勘误表。请提交关于github的bug报告:github.com/ hal3/ciml。

 

目录


  • Front Matter

  • Decision Trees

  • Limits of Learning

  • Geometry and Nearest Neighbors

  • The Perceptron

  • Practical Issues

  • Beyond Binary Classification

  • Linear Models

  • Bias and Fairness

  • Probabilistic Modeling

  • Neural Networks

  • Kernel Methods

  • Learning Theory

  • Ensemble Methods

  • Efficient Learning

  • Unsupervised Learning

  • Expectation Maximization

  • Structured Prediction

  • Imitation Learning

  • Back Matter



便捷下载:关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“CIML” 获取机器学习A Course In Machine Learning》227页pdf简明书链接下载索引~


-END-
专 · 知


专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取5000+AI主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程视频资料和与专家交流咨询
请加专知小助手微信(扫一扫如下二维码添加), 获取专知VIP会员码 加入专知人工智能主题群,咨询技术商务合作~
点击“阅读原文”,了解使用专知,查看5000+AI主题知识资料
登录查看更多
26

相关内容

“机器学习是近20多年兴起的一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。机器学习理论主要是设计和分析一些让 可以自动“ 学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与统计推断学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。很多 推论问题属于 无程序可循难度,所以部分的机器学习研究是开发容易处理的近似算法。” ——中文维基百科

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

通过机器学习的实际操作指南深入挖掘数据

机器学习: 为开发人员和技术专业人员提供实践指导和全编码的工作示例,用于开发人员和技术专业人员使用的最常见的机器学习技术。这本书包含了每一个ML变体的详细分析,解释了它是如何工作的,以及如何在特定的行业中使用它,允许读者在阅读过程中将所介绍的技术融入到他们自己的工作中。机器学习的一个核心内容是对数据准备的强烈关注,对各种类型的学习算法的全面探索说明了适当的工具如何能够帮助任何开发人员从现有数据中提取信息和见解。这本书包括一个完整的补充教师的材料,以方便在课堂上使用,使这一资源有用的学生和作为一个专业的参考。

机器学习的核心是一种基于数学和算法的技术,它是历史数据挖掘和现代大数据科学的基础。对大数据的科学分析需要机器学习的工作知识,它根据从训练数据中获得的已知属性形成预测。机器学习是一个容易理解的,全面的指导,为非数学家,提供明确的指导,让读者:

  • 学习机器学习的语言,包括Hadoop、Mahout和Weka
  • 了解决策树、贝叶斯网络和人工神经网络
  • 实现关联规则、实时和批量学习
  • 为安全、有效和高效的机器学习制定战略计划

通过学习构建一个可以从数据中学习的系统,读者可以在各个行业中增加他们的效用。机器学习是深度数据分析和可视化的核心,随着企业发现隐藏在现有数据中的金矿,这一领域的需求越来越大。对于涉及数据科学的技术专业人员,机器学习:为开发人员和技术专业人员提供深入挖掘所需的技能和技术。

成为VIP会员查看完整内容
0
113

如今是人工智能高歌猛进的时代,机器学习的发展也如火如荼。然而,复杂的数学公式和难解的专业术语容易令刚接触这一领域的学习者望而生畏。有没有这样一本机器学习的书,能摒弃复杂的公式推导,带领读者通过实践来掌握机器学习的方法?

《机器学习与优化》正是这样一本书!它的写作脱胎于意大利特伦托大学机器学习与智能优化实验室(LION lab)的研究项目,语言轻松幽默,内容图文并茂,涵盖了机器学习中可能遇到的各方面知识。更重要的是,书中特别介绍了两个机器学习的应用,即信息检索和协同推荐,让读者在了解信息结构的同时,还能利用信息来预测相关的推荐项。

本书作者以及读者群发布的数据、指导说明和教学短片都可以在本书网站上找到:https://intelligent-optimization.org/LIONbook/。

本书内容要点: ● 监督学习——线性模型、决策森林、神经网络、深度和卷积网络、支持向量机等 ● 无监督模型和聚类——K均值、自底而上聚类、自组织映射、谱图绘制、半监督学习等 ● 优化是力量之源——自动改进的局部方法、局部搜索和反馈搜索优化、合作反馈搜索优化、多目标反馈搜索优化等 ● 应用精选——文本和网页挖掘,电影的协同推荐系统

成为VIP会员查看完整内容
1
113

本备忘单是机器学习手册的浓缩版,包含了许多关于机器学习的经典方程和图表,旨在帮助您快速回忆起机器学习中的知识和思想。

这个备忘单有两个显著的优点:

  1. 清晰的符号。数学公式使用了许多令人困惑的符号。例如,X可以是一个集合,一个随机变量,或者一个矩阵。这是非常混乱的,使读者很难理解数学公式的意义。本备忘单试图规范符号的使用,所有符号都有明确的预先定义,请参见小节。

  2. 更少的思维跳跃。在许多机器学习的书籍中,作者省略了数学证明过程中的一些中间步骤,这可能会节省一些空间,但是会给读者理解这个公式带来困难,读者会在中间迷失。

成为VIP会员查看完整内容
0
200

机器学习是学习数据和经验的算法的研究。它被广泛应用于各种应用领域,从医学到广告,从军事到行人。任何需要理解数据的领域都是机器学习的潜在的消费者。《A Course in Machine Learning》属于入门级资料,它涵盖了现代机器学习的大多数主要方面(监督学习,无监督学习,大间隔方法,概率建模,学习理论等)。它的重点是具有严格基础的广泛应用。

机器学习是一个广阔而迷人的领域。即使在今天,机器学习技术仍然在你的生活中占据了相当大的一部分,而且常常是在你不知情的情况下。在某种程度上,任何看似合理的人工智能方法都必须包括学习,如果不是为了别的原因,而是因为如果一个系统不能学习,那么它就很难被称为智能系统。机器学习本身也很吸引人,因为它提出了关于学习和成功完成任务的意义的哲学问题。

同时,机器学习也是一个非常广泛的领域,试图涵盖所有领域对于教学来说将是一场灾难。因为它发展得如此之快,以至于任何试图报道最新发展的书籍在上线之前都会过时。因此,本书有两个目标。首先,要通俗地介绍一个非常深的领域是什么。第二,为读者提供必要的技能,以便在新技术发展过程中掌握新技术。

  • Front Matter
  • Decision Trees
  • Limits of Learning
  • Geometry and Nearest Neighbors
  • The Perceptron
  • Practical Issues
  • Beyond Binary Classification
  • Linear Models
  • Bias and Fairness
  • Probabilistic Modeling
  • Neural Networks
  • Kernel Methods
  • Learning Theory
  • Ensemble Methods
  • Efficient Learning
  • Unsupervised Learning
  • Expectation Maximization
  • Structured Prediction
  • Imitation Learning
  • Back Matter
成为VIP会员查看完整内容
0
68

课程题目

机器学习中的常识性问题

课程内容

机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。它是人工智能的核心,是使计算机具有智能的根本途径。本课程主要介绍了当下机器学习的常识性问题,如机器学习概念,发展历史,超参数,常用的统计学习方法,以及数学理论等基础性知识。

成为VIP会员查看完整内容
0
43
小贴士
相关资讯
【资源】机器学习数学全书,1900页PDF下载
全球人工智能
83+阅读 · 2019年10月17日
421页《机器学习数学基础》最新2019版PDF下载
381页机器学习数学基础PDF下载
专知
71+阅读 · 2018年10月9日
第二章 机器学习中的数学基础
Datartisan数据工匠
8+阅读 · 2018年4月5日
贝叶斯机器学习前沿进展
无人机
5+阅读 · 2018年1月26日
相关VIP内容
专知会员服务
108+阅读 · 2020年7月5日
专知会员服务
123+阅读 · 2020年5月2日
机器学习速查手册,135页pdf
专知会员服务
200+阅读 · 2020年3月15日
【经典书】精通机器学习特征工程,中文版,178页pdf
专知会员服务
254+阅读 · 2020年2月15日
【2020新书】简明机器学习导论,电子书与500页PPT
专知会员服务
183+阅读 · 2020年2月7日
【机器学习课程】机器学习中的常识性问题
专知会员服务
43+阅读 · 2019年12月2日
相关论文
Ya Wang,Dongliang He,Fu Li,Xiang Long,Zhichao Zhou,Jinwen Ma,Shilei Wen
8+阅读 · 2019年11月21日
TinyBERT: Distilling BERT for Natural Language Understanding
Xiaoqi Jiao,Yichun Yin,Lifeng Shang,Xin Jiang,Xiao Chen,Linlin Li,Fang Wang,Qun Liu
8+阅读 · 2019年9月23日
Liang Yao,Chengsheng Mao,Yuan Luo
14+阅读 · 2019年9月7日
Ashutosh Adhikari,Achyudh Ram,Raphael Tang,Jimmy Lin
4+阅读 · 2019年8月22日
Qian Chen,Zhu Zhuo,Wen Wang
10+阅读 · 2019年2月28日
Piotr Szymański,Tomasz Kajdanowicz,Nitesh Chawla
3+阅读 · 2019年1月1日
ML-Net: multi-label classification of biomedical texts with deep neural networks
Jingcheng Du,Qingyu Chen,Yifan Peng,Yang Xiang,Cui Tao,Zhiyong Lu
7+阅读 · 2018年11月15日
Yong Wang,Xiao-Ming Wu,Qimai Li,Jiatao Gu,Wangmeng Xiang,Lei Zhang,Victor O. K. Li
9+阅读 · 2018年7月8日
Yuta Nishimura,Katsuhito Sudoh,Graham Neubig,Satoshi Nakamura
4+阅读 · 2018年6月7日
Daniel Oñoro-Rubio,Mathias Niepert,Alberto García-Durán,Roberto González,Roberto J. López-Sastre
9+阅读 · 2018年3月31日
Top