几何图是一种空间嵌入图,用于生物化学、物理模拟和多智能体机器人系统建模。重要的是,图的属性会随着全局欧氏变换或系统的对称性进行变换,例如旋转、反射和平移。具有全局对称性的图神经网络(GNN)已经成为几何图的架构选择。本讲座将介绍两类几何GNNs:(1)等变GNNs,使用全局对称等变的标量和几何特征;(2)不变GNN,它只通过不变标量(如距离和角度)进行局部推理。此外,我们将从区分几何图形的角度研究这两类几何gnn的表达能力,即图同构检验。我们将介绍几何威斯菲勒-勒曼图同构检验(GWL)。然后,我们将使用GWL框架正式表明,等变GNN比不变GNN具有更强的表达能力,因为它们能够传播超越局部邻域的几何信息,并组成构建远程交互。

成为VIP会员查看完整内容
19

相关内容

图神经网络 (GNN) 是一种连接模型,它通过图的节点之间的消息传递来捕捉图的依赖关系。与标准神经网络不同的是,图神经网络保留了一种状态,可以表示来自其邻域的具有任意深度的信息。近年来,图神经网络(GNN)在社交网络、知识图、推荐系统、问答系统甚至生命科学等各个领域得到了越来越广泛的应用。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
最新《图神经网络》报告,29页ppt建模阐述GNN 与GAT等
专知会员服务
65+阅读 · 2022年8月25日
专知会员服务
15+阅读 · 2021年10月4日
专知会员服务
37+阅读 · 2020年11月24日
图神经网络基准,37页ppt,NTU Chaitanya Joshi
专知会员服务
23+阅读 · 2020年8月22日
AAAI 2022 | ProtGNN:自解释图神经网络络
PaperWeekly
0+阅读 · 2022年8月22日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2021年6月14日
Arxiv
19+阅读 · 2021年2月4日
Arxiv
38+阅读 · 2020年12月2日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
Arxiv
15+阅读 · 2020年2月5日
Arxiv
24+阅读 · 2018年10月24日
VIP会员
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
Arxiv
13+阅读 · 2021年6月14日
Arxiv
19+阅读 · 2021年2月4日
Arxiv
38+阅读 · 2020年12月2日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
Arxiv
15+阅读 · 2020年2月5日
Arxiv
24+阅读 · 2018年10月24日
微信扫码咨询专知VIP会员