最新《图神经网络》报告,29页ppt建模阐述GNN 与GAT等

2022 年 8 月 25 日 专知


近年来,深度学习已经彻底改变了许多机器学习任务,从图像分类和视频处理到语音识别和自然语言理解。这些任务中的数据通常用欧几里得空间表示。然而,越来越多的应用从非欧几里得域生成数据,并表示为对象之间具有复杂关系和相互依赖关系的图。图数据的复杂性给现有的机器学习算法带来了巨大的挑战。近年来,许多关于图数据扩展深度学习方法的研究已经出现。在八报告中,提供了一个简明的图神经网络(GNNs)在数据挖掘和机器学习领域的概述。我们提出了一种新的分类方法,将最先进的图神经网络分为四类,即递归图神经网络、卷积图神经网络、图自编码器和时空图神经网络。我们进一步讨论了图神经网络在各个领域的应用,并总结了图神经网络的开源代码、基准数据集和模型评估。最后,我们提出了这一快速发展领域的潜在研究方向。



专知便捷查看

便捷下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“GNN29” 就可以获取最新《图神经网络》报告,29页ppt建模阐述GNN 与GAT等》专知下载链接

                       
专知,专业可信的人工智能知识分发 ,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取100000+AI(AI与军事、医药、公安等)主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程资料和与专家交流咨询
点击“ 阅读原文 ”,了解使用 专知 ,查看获取100000+AI主题知识资料
登录查看更多
7

相关内容

图神经网络 (GNN) 是一种连接模型,它通过图的节点之间的消息传递来捕捉图的依赖关系。与标准神经网络不同的是,图神经网络保留了一种状态,可以表示来自其邻域的具有任意深度的信息。近年来,图神经网络(GNN)在社交网络、知识图、推荐系统、问答系统甚至生命科学等各个领域得到了越来越广泛的应用。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
图神经网络综述
专知会员服务
199+阅读 · 2022年1月9日
【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
126+阅读 · 2021年6月4日
【斯坦福CS224W】图神经网络GNN高级主题,60页ppt
专知会员服务
72+阅读 · 2021年3月5日
专知会员服务
45+阅读 · 2020年12月26日
图神经网络综述 (中文版),14页pdf
专知会员服务
332+阅读 · 2020年11月24日
专知会员服务
135+阅读 · 2020年8月24日
如何建模动态图?看这份《时序图神经网络》26页ppt
专知会员服务
140+阅读 · 2020年7月25日
图信号处理导论,85页ppt
专知
2+阅读 · 2022年9月11日
【KDD2020】图神经网络:基础与应用,322页ppt
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年11月20日
Arxiv
22+阅读 · 2021年12月2日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
102+阅读 · 2020年3月4日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关VIP内容
图神经网络综述
专知会员服务
199+阅读 · 2022年1月9日
【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
126+阅读 · 2021年6月4日
【斯坦福CS224W】图神经网络GNN高级主题,60页ppt
专知会员服务
72+阅读 · 2021年3月5日
专知会员服务
45+阅读 · 2020年12月26日
图神经网络综述 (中文版),14页pdf
专知会员服务
332+阅读 · 2020年11月24日
专知会员服务
135+阅读 · 2020年8月24日
如何建模动态图?看这份《时序图神经网络》26页ppt
专知会员服务
140+阅读 · 2020年7月25日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
相关论文
Arxiv
0+阅读 · 2022年11月20日
Arxiv
22+阅读 · 2021年12月2日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
102+阅读 · 2020年3月4日
Arxiv
26+阅读 · 2018年2月27日
Top
微信扫码咨询专知VIP会员