这本书将理论计算机科学和机器学习连接起来,探索双方可以相互教授什么。它强调需要灵活、易于处理的模型,以便更好地捕捉机器学习的难点,而不是难点。
理论计算机科学家将介绍机器学习的重要模型和该领域的主要问题。机器学习研究人员将以一种可访问的格式介绍前沿研究,并熟悉现代算法工具包,包括矩的方法,张量分解和凸规划松弛。
此外是建立对实践中使用的方法的严格理解,并促进发现令人兴奋的新方法来解决重要的长期问题。
现代机器学习系统通常建立在没有可证明的保证的算法之上,它们何时以及为何有效是一个争论的主题。在这门课中,我们将重点设计算法,让我们可以严格分析其性能,以解决基本的机器学习问题。我们将涵盖的主题包括:非负矩阵分解、张量分解、稀疏编码、学习混合模型、图模型中的矩阵补全和推理。几乎所有这些糟糕的计算困难的问题, 所以开发一个算法理论是关于(1)选择合适的模型来研究这些问题,(2)开发适宜的数学工具(通常从概率,几何或代数)为了严格分析现有的启发式,或设计全新的算法。