Predicting wildfire spread is critical for land management and disaster preparedness. To this end, we present `Next Day Wildfire Spread,' a curated, large-scale, multivariate data set of historical wildfires aggregating nearly a decade of remote-sensing data across the United States. In contrast to existing fire data sets based on Earth observation satellites, our data set combines 2D fire data with multiple explanatory variables (e.g., topography, vegetation, weather, drought index, population density) aligned over 2D regions, providing a feature-rich data set for machine learning. To demonstrate the usefulness of this data set, we implement a convolutional autoencoder that takes advantage of the spatial information of this data to predict wildfire spread. We compare the performance of the neural network with other machine learning models: logistic regression and random forest. This data set can be used as a benchmark for developing wildfire propagation models based on remote sensing data for a lead time of one day.
翻译:预测野火扩散对于土地管理和备灾至关重要。 为此,我们展示了“下一个日野火传播”,这是一套由美国各地近十年遥感数据组成的由历史野火构成的包罗式、大规模、多变的一组数据,汇集了近十年来美国各地的遥感数据。与现有的基于地球观测卫星的火力数据集相比,我们的数据集将2D火灾数据与2D区域对齐的多个解释变量(例如地形、植被、天气、干旱指数、人口密度)结合起来,为机器学习提供了一套内容丰富的数据集。为了展示这一数据集的实用性,我们使用了利用这些数据的空间信息来预测野火蔓延的动态自动编码。我们将神经网络的性能与其他机器学习模型(物流回归和随机森林)进行了比较。这一数据集可以用作基准,用于在一天的准备时间里根据遥感数据开发野火传播模型。