In a point cloud sequence, 3D object tracking aims to predict the location and orientation of an object in the current search point cloud given a template point cloud. Motivated by the success of transformers, we propose Point Tracking TRansformer (PTTR), which efficiently predicts high-quality 3D tracking results in a coarse-to-fine manner with the help of transformer operations. PTTR consists of three novel designs. 1) Instead of random sampling, we design Relation-Aware Sampling to preserve relevant points to given templates during subsampling. 2) Furthermore, we propose a Point Relation Transformer (PRT) consisting of a self-attention and a cross-attention module. The global self-attention operation captures long-range dependencies to enhance encoded point features for the search area and the template, respectively. Subsequently, we generate the coarse tracking results by matching the two sets of point features via cross-attention. 3) Based on the coarse tracking results, we employ a novel Prediction Refinement Module to obtain the final refined prediction. In addition, we create a large-scale point cloud single object tracking benchmark based on the Waymo Open Dataset. Extensive experiments show that PTTR achieves superior point cloud tracking in both accuracy and efficiency.
翻译:在一个点云序列中, 3D对象跟踪旨在预测当前搜索点云中某个对象的位置和方向, 给定一个模板点云。 我们提议基于变压器的成功, 提议点跟踪TRansfor(PTTR), 在变压器操作的帮助下, 高效地预测高质量的 3D 跟踪结果。 PTTR 由三种新设计组成 。 1) 我们不是随机抽样, 而是设计“ 关系软件抽样”, 以保存当前搜索点云中某个对象的位置和方向。 2) 此外, 我们提议建立一个点关系变压器(PRT), 由自留和交叉注意模块组成。 全球自留操作获取长距离依赖性定位, 以便分别在变压器操作的帮助下, 以粗略的跟踪结果匹配两组点的点。 3) 根据粗略的跟踪结果, 我们使用一个新型的预测模块, 以获得最终的精细化预测。 此外, 我们创建了一个大型的云端跟踪轨道, 以高空点为主的轨道定位, 并用高空的轨道定位, 显示高空的轨道跟踪。