因果机器学习(Causal ML) 处理各种任务,包括因果效应推断、因果推理和因果结构发现。本论文探讨了适用于大数据集和复杂高维输入/输出模式(如图像、文本、时间序列和视频)的因果ML方法中的不确定性。可扩展性对于高效处理大量信息和预测复杂关系至关重要。随着模型灵活性的提升,传达未知信息变得愈加重要。我们考察了两种主要的不确定性类型:统计不确定性和结构不确定性。统计不确定性在拟合机器学习模型到有限数据集时产生,解决这一不确定性有助于预测一系列合理的因果效应,随着训练样本的增加而缩小,从而促进更明智的决策并指示需要进一步理解的领域。结构不确定性则源于对因果结构的模糊认识,通常需要对数据生成过程或与世界的互动做出进一步假设。在本论文中,我们开发了能够有效应对统计和结构不确定性的可扩展因果ML方法。我们展示了在因果ML算法设计和应用中考虑可扩展性和不确定性的重要性,提升决策能力和知识获取。我们的贡献旨在推动因果机器学习领域的发展,为未来研究奠定基础。

成为VIP会员查看完整内容
24

相关内容

【MIT博士论文】物理启发的生成式模型
专知会员服务
20+阅读 · 9月6日
【CMU博士论文】经典方法对现代机器学习的改进
专知会员服务
23+阅读 · 8月16日
【牛津大学博士论文】抗规避攻击鲁棒学习的样本复杂度
论文浅尝 | 采用多层注意力机制的事件检测
开放知识图谱
23+阅读 · 2019年8月24日
论文浅尝 | 时序与因果关系联合推理
开放知识图谱
35+阅读 · 2019年6月23日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
11+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
11+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Arxiv
156+阅读 · 2023年4月20日
A Survey of Large Language Models
Arxiv
398+阅读 · 2023年3月31日
Arxiv
66+阅读 · 2023年3月26日
Arxiv
139+阅读 · 2023年3月24日
Arxiv
20+阅读 · 2023年3月17日
VIP会员
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
11+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
11+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
微信扫码咨询专知VIP会员