前言: 目标:本课程旨在让学生对人工智能的基本概念和实践有一个坚实的(通常是有点理论性的)基础。这门课程在第一学期主要涉及符号化的人工智能,有时也被称为优秀的老式人工智能(GofAI),并在第二学期提供统计方法的基础。事实上,一个完整的基于机器学习的AI应该有专业课程,并且需要比我们在这门课程中更多的数学基础。
课程内容:
目标: 使学生对人工智能领域的基本概念和实践有一个坚实的基础。该课程将基于Russell/Norvig的书《人工智能》:现代方法[RN09]
Artificial Intelligence I(第一部分): 介绍人工智能作为一个研究领域,讨论作为人工智能统一概念范式的理性代理,并涵盖问题解决、搜索、约束传播、逻辑、知识表示和规划。
Artificial Intelligence II(第二部分): 更倾向于让学生接触基于统计的人工智能的基础知识:我们从不确定性下的推理开始,用贝叶斯网络建立基础,并将其扩展到理性决策理论。在此基础上,我们介绍了机器学习的基础知识。