We explore the usage of meta-learning to derive the causal direction between variables by optimizing over a measure of distribution simplicity. We incorporate a stochastic graph representation which includes latent variables and allows for more generalizability and graph structure expression. Our model is able to learn causal direction indicators for complex graph structures despite effects of latent confounders. Further, we explore robustness of our method with respect to violations of our distributional assumptions and data scarcity. Our model is particularly robust to modest data scarcity, but is less robust to distributional changes. By interpreting the model predictions as stochastic events, we propose a simple ensemble method classifier to reduce the outcome variability as an average of biased events. This methodology demonstrates ability to infer the existence as well as the direction of a causal relationship between data distributions.


翻译:我们探索元学习的用法,通过优化分布简单度量来得出变量之间的因果方向。我们加入了一个包含潜在变量的随机图形代表,并允许更笼统和图形结构表达。我们的模型能够学习复杂图形结构的因果方向指标,尽管潜在混淆者的影响。此外,我们探索了我们的方法在违反我们分布假设和数据稀缺方面的稳健性。我们的模型对于适度的数据稀缺特别强,但对分布变化则不太强。通过将模型预测解读为随机事件,我们提出了一个简单的共通方法分类法,以减少结果的可变性,作为偏差事件的平均值。这一方法表明能够推断数据分布之间的因果关系的存在和方向。

0
下载
关闭预览

相关内容

元学习(meta learning) 最新进展综述论文
专知会员服务
278+阅读 · 2020年5月8日
因果关联学习,Causal Relational Learning
专知会员服务
182+阅读 · 2020年4月21日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Meta Learning for Causal Direction
Arxiv
5+阅读 · 2020年7月6日
Arxiv
5+阅读 · 2020年6月16日
Arxiv
14+阅读 · 2019年9月11日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
3+阅读 · 2018年2月7日
VIP会员
相关VIP内容
元学习(meta learning) 最新进展综述论文
专知会员服务
278+阅读 · 2020年5月8日
因果关联学习,Causal Relational Learning
专知会员服务
182+阅读 · 2020年4月21日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关论文
Top
微信扫码咨询专知VIP会员