Kim et al. (2021) gave a method to embed a given binary $[n,k]$ code $\mathcal{C}$ $(k = 3, 4)$ into a self-orthogonal code of the shortest length which has the same dimension $k$ and minimum distance $d' \ge d(\mathcal{C})$. We extends this result for $k=5$ and $6$ by proposing a new method related to a special matrix, called the self-orthogonality matrix $SO_k$, obtained by shortnening a Reed-Muller code $\mathcal{R}(2,k)$. Furthermore, we disprove partially the conjecture (Kim et al. (2021)) by showing that if $31 \le n \le 256$ and $n\equiv 14,22,29 \pmod{31}$, then there exist optimal $[n,5]$ codes which are self-orthogonal. We also construct optimal self-orthogonal $[n,6]$ codes when $41 \le n \le 256$ satisfies $n \ne 46, 54, 61$ and $n \not\equiv 7, 14, 22, 29, 38, 45, 53, 60 \pmod{63}$.
翻译:Kim et al. (2021) 提供了一种方法,将给定的二进制代码$[n,k]${mathcal{C}}$(k = 3,4)$(k = 3,4)$(k) 嵌入一个最短长度的自体式代码中,该代码的尺寸相同(k美元和最低距离$d'ge d(mathcal{C})$(2021)美元。我们对美元=5美元和6美元的结果进行扩展,方法是提出一种与特殊矩阵有关的新方法,称为自体体式矩阵($SO_k$),该矩阵由缩写 Reed-Muller代码 $\mathcal{R}(2,k)美元获得。此外,我们部分解析了配方(Kim et al. $ $ $ 和 $ge $(2021) ), 显示如果31 le 256美元 le 256, 美元和 equiv 14, 256美元, 美元,那么,那么,就有最佳的 $ $ $ 。