We revisit the problem of maintaining the longest increasing subsequence (LIS) of an array under (i) inserting an element, and (ii) deleting an element of an array. In a recent breakthrough, Mitzenmacher and Seddighin [STOC 2020] designed an algorithm that maintains an $\mathcal{O}((1/\epsilon)^{\mathcal{O}(1/\epsilon)})$-approximation of LIS under both operations with worst-case update time $\mathcal{\tilde O}(n^{\epsilon})$, for any constant $\epsilon>0$. We exponentially improve on their result by designing an algorithm that maintains an $(1+\epsilon)$-approximation of LIS under both operations with worst-case update time $\mathcal{\tilde O}(\epsilon^{-5})$. Instead of working with the grid packing technique introduced by Mitzenmacher and Seddighin, we take a different approach building on a new tool that might be of independent interest: LIS sparsification. A particularly interesting consequence of our result is an improved solution for the so-called Erd\H{o}s-Szekeres partitioning, in which we seek a partition of a given permutation of $\{1,2,\ldots,n\}$ into $\mathcal{O}(\sqrt{n})$ monotone subsequences. This problem has been repeatedly stated as one of the natural examples in which we see a large gap between the decision-tree complexity and algorithmic complexity. The result of Mitzenmacher and Seddighin implies an $\mathcal{O}(n^{1+\epsilon})$ time solution for this problem, for any $\epsilon>0$. Our algorithm (in fact, its simpler decremental version) further improves this to $\mathcal{\tilde O}(n)$.


翻译:我们重新审视了在以下两种操作下保持一个阵列中最长增加的子序列(LIS)的问题:(一) 插入一个元素, (二) 删除一个阵列的元素。 在最近的突破中, Mitzenmacher 和 Seddiphin [STOC 设计了一个算法, 该算法维持一个$( mathcal) {O} (1/\ epsilon)\\ mathcal{ O} (1/\\ malth} (LIS) $(LIS) 在两个操作中, 以最坏的更新时间 $( mathcal) 来保持一个最小的子序列( max) 。 (cepslllon) 和 Seddighin 使用最坏的电网格包装技术, 我们用不同的方法构建了一个新工具, 这个工具可能会成为独立的 liaral2, 并且是一个有趣的结果。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
【Google】梯度下降,48页ppt
专知会员服务
81+阅读 · 2020年12月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
180+阅读 · 2020年2月1日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
已删除
将门创投
4+阅读 · 2019年10月11日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年1月11日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
【Google】梯度下降,48页ppt
专知会员服务
81+阅读 · 2020年12月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
180+阅读 · 2020年2月1日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
已删除
将门创投
4+阅读 · 2019年10月11日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员