Machine learning (ML) approaches are used more and more widely in biodiversity monitoring. In particular, an important application is the problem of predicting biodiversity indicators such as species abundance, species occurrence or species richness, based on predictor sets containing, e.g., climatic and anthropogenic factors. Considering the impressive number of different ML methods available in the litterature and the pace at which they are being published, it is crucial to develop uniform evaluation procedures, to allow the production of sound and fair empirical studies. However, defining fair evaluation procedures is challenging: because well-documented, intrinsic properties of biodiversity indicators such as their zero-inflation and over-dispersion, it is not trivial to design good sampling schemes for cross-validation nor good evaluation metrics. Indeed, the classical Mean Squared Error (MSE) fails to capture subtle differences in the performance of different methods, particularly in terms of prediction of very small, or very large values (e.g., zero counts or large counts). In this report, we illustrate this phenomenon by comparing ten statistical and machine learning models on the task of predicting waterbirds abundance in the North-African area, based on geographical, meteorological and spatio-temporal factors. Our results highlight that differnte off-the-shelf evaluation metrics and cross-validation sampling approaches yield drastically different rankings of the metrics, and fail to capture interpretable conclusions.


翻译:在生物多样性监测中,越来越广泛地使用机器学习方法(ML),特别是,一个重要的应用问题是根据含有气候和人为因素的预测数据集预测物种丰度、物种发生情况或物种丰富程度等生物多样性指标的问题。考虑到在垃圾方面现有的不同ML方法数量之多及其出版速度之快,必须制定统一的评估程序,以便能够产生合理和公平的实证研究。然而,界定公平的评估程序具有挑战性:因为生物多样性指标,例如其零膨胀和过度分散等,有详细记载的内在特性,因此,根据不同方法的地理、气象和标准解释,设计用于交叉校验或良好评估指标的良好抽样计划并非无关紧要。事实上,典型的中位错误(MSE)未能捕捉到不同方法绩效的细微差异,特别是在预测非常小或非常大(例如零计或大量计)的捕获值方面。在本报告中,我们通过比较十种统计和机器学习模型模型来说明这一现象,以预测北非地区水鸟丰度的任务,其结果是零膨胀和超分散的,根据不同地理、气象和标准推理算结果的深度推算结果,以不同的结果来说明。

0
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月12日
Arxiv
43+阅读 · 2019年12月20日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员