Biometric authentication using gait has become a promising field due to its unobtrusive nature. Recent approaches in model-based gait recognition techniques utilize spatio-temporal graphs for the elegant extraction of gait features. However, existing methods often rely on multi-scale operators for extracting long-range relationships among joints resulting in biased weighting. In this paper, we present HEATGait, a gait recognition system that improves the existing multi-scale graph convolution by efficient hop-extraction technique to alleviate the issue. Combined with preprocessing and augmentation techniques, we propose a powerful feature extractor that utilizes ResGCN to achieve state-of-the-art performance in model-based gait recognition on the CASIA-B gait dataset.
翻译:使用步态进行生物测定的认证因其不侵扰性,已成为一个很有希望的领域。最近在基于模型的步态识别技术方面采用的方法利用时空微粒图来优雅地提取步态特征。然而,现有方法往往依靠多尺度操作员来提取各关节之间的长距离关系,从而导致偏差加权。在本文件中,我们介绍了HEATGait,这是一个通过高效跳式吸附技术改进现有多尺度图解熔化的动作识别系统,以缓解这一问题。与预处理和增强技术相结合,我们提出了一个强大的特征提取器,利用ResGCN在CASIA-B网格数据集基于模型的步态识别中实现最先进的性能。