Despite their frequency, denial-of-service (DoS\blfootnote{Denial of Service (DoS), Distributed Denial of Service (DDoS), Probabilistic Packet Marking (PPM), coupon collector's problem (CCP)}) and distributed-denial-of-service (DDoS) attacks are difficult to prevent and trace, thus posing a constant threat. One of the main defense techniques is to identify the source of attack by reconstructing the attack graph, and then filter the messages arriving from this source. One of the most common methods for reconstructing the attack graph is Probabilistic Packet Marking (PPM). We focus on edge-sampling, which is the most common method. Here, we study the time, in terms of the number of packets, the victim needs to reconstruct the attack graph when there is a single attacker. This random variable plays an important role in the reconstruction algorithm. Our main result is a determination of the asymptotic distribution and expected value of this time. The process of reconstructing the attack graph is analogous to a version of the well-known coupon collector's problem (with coupons having distinct probabilities). Thus, the results may be used in other applications of this problem.
翻译:尽管频频发生,拒绝服务 (DoS\footnote{Denial of Service (DoS),分布式拒绝服务 (DDoS)、概率包标记法 (PPM)、收集优惠券 (CCP)}) 和分布式拒绝服务 (DDoS) 攻击却难以防止和追踪,因此构成了持续的威胁。主要防御技术之一是通过重建攻击图来识别攻击源,随后过滤来自该源的消息。最常用的重建攻击图方法之一是概率包标记法 (PPM)。我们关注的是边采样,这是最常见的方法。在这里,我们研究了在只有单个攻击者的情况下,受害者需要多少个数据包的时间来重建攻击图。这个随机变量在重建算法中扮演着重要的角色。我们的主要研究成果是确定这个时间的渐进分布和期望值。重建攻击图的过程类似于著名的收集优惠券问题的一个版本 (优惠券具有不同的概率)。因此,这些结果可用于该问题的其他应用。