This study establishes Markovian traffic equilibrium assignment based on the network generalized extreme value (NGEV) model, which we call NGEV equilibrium assignment. The use of the NGEV model for route choice modeling has recently been proposed, and it enables capturing the path correlation without explicit path enumeration. However, the theoretical properties of the model in traffic assignment have yet to be investigated in the literature, which has limited the practical applicability of the NGEV model in the traffic assignment field. This study addresses the research gap by providing the theoretical developments necessary for the NGEV equilibrium assignment. We first show that the NGEV assignment can be formulated and solved under the same path algebra as the traditional Markovian traffic assignment models. Moreover, we present the equivalent optimization formulations to the NGEV equilibrium assignment. The formulations allow us to derive both primal and dual types of efficient solution algorithms. In particular, the dual algorithm is based on the accelerated gradient method that is for the first time applied in the traffic assignment. The numerical experiments showed the excellent convergence and complementary relationship of the proposed primal-dual algorithms.


翻译:这项研究根据网络通用极端值(NGEV)模式确定了Markovian交通平衡分配模式,我们称之为NGEV均衡分配模式。最近有人提议使用NGEV模式进行路线选择模型模型,这样就可以在不进行明确的路径分类的情况下捕捉路径相关性。然而,交通分配模式的理论性质尚未在文献中加以研究,这限制了NGEV模式在交通分配领域的实际适用性。这项研究通过提供NGEV均衡分配所需的理论发展,解决了研究差距。我们首先显示,NGEV任务可以按照与传统的Markovian交通分配模式相同的代数来制定和解决。此外,我们为NGEV均衡分配提供了等效的优化配方。这些配方使我们能够从最初和双重的高效解算法中得出。特别是,双重算法是以首次在交通分配中使用的加速梯度法为基础。数字实验显示拟议的原始算法的极接近和互补关系。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
31+阅读 · 2021年9月23日
最新《时序分类:深度序列模型》教程,172页ppt
专知会员服务
42+阅读 · 2020年11月11日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【电子书】机器学习实战(Machine Learning in Action),附PDF
专知会员服务
126+阅读 · 2019年11月25日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年12月22日
Arxiv
3+阅读 · 2021年11月1日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关VIP内容
Top
微信扫码咨询专知VIP会员