The Resource Allocation approach (RA) improves the performance of MOEA/D by maintaining a big population and updating few solutions each generation. However, most of the studies on RA generally focused on the properties of different Resource Allocation metrics. Thus, it is still uncertain what the main factors are that lead to increments in performance of MOEA/D with RA. This study investigates the effects of MOEA/D with the Partial Update Strategy in an extensive set of MOPs to generate insights into correspondences of MOEA/D with the Partial Update and MOEA/D with small population size and big population size. Our work undertakes an in-depth analysis of the populational dynamics behaviour considering their final approximation Pareto sets, anytime hypervolume performance, attained regions and number of unique non-dominated solutions. Our results indicate that MOEA/D with Partial Update progresses with the search as fast as MOEA/D with small population size and explores the search space as MOEA/D with big population size. MOEA/D with Partial Update can mitigate common problems related to population size choice with better convergence speed in most MOPs, as shown by the results of hypervolume and number of unique non-dominated solutions, the anytime performance and Empirical Attainment Function indicates.


翻译:资源配置方法(RA)通过保持大量人口和每代更新少数解决办法,改善了教育部/发展部的业绩,但是,大多数关于亚美尼亚共和国的研究一般侧重于不同资源分配指标的特性,因此,还不确定哪些主要因素导致与亚美尼亚共和国合作的教育部/司的业绩增加。这项研究调查了教育部/司与一组广泛的《部分更新战略》在一系列《部分更新战略》中的影响,以深入了解教育部/司与《部分更新》以及人口规模小和人口规模大的《部分更新》和《部/司》之间的对应关系。我们的工作对人口动态行为进行了深入分析,考虑到其最终接近的Pareto设置、随时超大的业绩、达到的区域和独特的非主导性解决办法的数量。我们的结果表明,随着人口规模小的MOEA/D的快速搜索,该部/司的进展是部分更新的,并探索与人口规模大、作为MOEA/D的搜索空间。MOEA/司《部分更新》可以缓解与人口规模小和人口规模大的人口选择有关的共同问题,而大多数《议定书》缔约方更趋同速度的问题。

0
下载
关闭预览

相关内容

【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
63+阅读 · 2021年8月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
已删除
将门创投
7+阅读 · 2018年8月28日
Arxiv
0+阅读 · 2022年2月23日
Graph-Based Recommendation System
Arxiv
4+阅读 · 2018年7月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
已删除
将门创投
7+阅读 · 2018年8月28日
Top
微信扫码咨询专知VIP会员