We study coded distributed matrix multiplication from an approximate recovery viewpoint. We consider a system of $P$ computation nodes where each node stores $1/m$ of each multiplicand via linear encoding. Our main result shows that the matrix product can be recovered with $\epsilon$ relative error from any $m$ of the $P$ nodes for any $\epsilon > 0$. We obtain this result through a careful specialization of MatDot codes -- a class of matrix multiplication codes previously developed in the context of exact recovery ($\epsilon=0$). Since prior results showed that MatDot codes achieve the best exact recovery threshold for a class of linear coding schemes, our result shows that allowing for mild approximations leads to a system that is nearly twice as efficient as exact reconstruction. As an additional contribution, we develop an optimization framework based on alternating minimization that enables the discovery of new codes for approximate matrix multiplication.


翻译:我们从大致回收角度研究代码分布式矩阵乘法。 我们考虑了一个以$P$计算的计算节点系统, 每个节点通过线性编码存储每个倍数的1美元/ 百万美元。 我们的主要结果显示, 矩阵产品可以用美元/ epsilon$相对差从任何美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 来回收。 我们通过仔细地专门研究 MatDot 代码 -- -- 一种先前在精确回收背景下开发的矩阵乘法( $\ epsilon= 0 $ ) 的分类方法来获取这一结果。 由于先前的结果显示, MatDot 代码为某类线性编码达到了最精确的回收门槛, 我们的结果显示, 允许温度近近于精确重建的系统效率的两倍。 作为额外的贡献, 我们开发一个优化框架, 以交替最小化为基础,,,, 使 能够发现 粗化 矩阵乘 倍增 。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
经济学中的数据科学,Data Science in Economics,附22页pdf
专知会员服务
35+阅读 · 2020年4月1日
图神经网络库PyTorch geometric
图与推荐
17+阅读 · 2020年3月22日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
已删除
将门创投
5+阅读 · 2017年11月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月25日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关资讯
图神经网络库PyTorch geometric
图与推荐
17+阅读 · 2020年3月22日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
已删除
将门创投
5+阅读 · 2017年11月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员