In this paper we study population protocols governed by the {\em random scheduler}, which uniformly at random selects pairwise interactions between $n$ agents. The main result of this paper is the first time and space optimal {\em exact majority population protocol} which also works with high probability. The new protocol operates in the optimal {\em parallel time} $O(\log n),$ which is equivalent to $O(n\log n)$ sequential {\em pairwise interactions}, where each agent utilises the optimal number of $O(\log n)$ states. The time optimality of the new majority protocol is possible thanks to the novel concept of fixed-resolution phase clocks introduced and analysed in this paper. The new phase clock allows to count approximately constant parallel time in population protocols.
翻译:在本文中,我们研究由 {em 随机调度} 所规范的人口协议,这些协议在随机选择的一对一情况下统一适用于 $n 代理方之间的双向互动。 本文的主要结果是第一次和空间最优化 {em exactly masium Protocol} 。 新的协议在最佳的 {em 平行时间} $O (\log n) 运行, 美元相当于 $O (n\log n) 美元 的顺序和双向互动}, 每个代理方都使用 $O (\log n) 的最佳数量 。 新的多数协议的时间优化是有可能的, 因为在本文中引入并分析了固定分辨率时钟的新概念。 新阶段的时钟允许在人口协议中计算大约固定的平行时间 。