With the advancement of modern robotics, autonomous agents are now capable of hosting sophisticated algorithms, which enables them to make intelligent decisions. But developing and testing such algorithms directly in real-world systems is tedious and may result in the wastage of valuable resources. Especially for heterogeneous multi-agent systems in battlefield environments where communication is critical in determining the system's behavior and usability. Due to the necessity of simulators of separate paradigms (co-simulation) to simulate such scenarios before deploying, synchronization between those simulators is vital. Existing works aimed at resolving this issue fall short of addressing diversity among deployed agents. In this work, we propose \textit{SynchroSim}, an integrated co-simulation middleware to simulate a heterogeneous multi-robot system. Here we propose a velocity difference-driven adjustable window size approach with a view to reducing packet loss probability. It takes into account the respective velocities of deployed agents to calculate a suitable window size before transmitting data between them. We consider our algorithm-specific simulator agnostic but for the sake of implementation results, we have used Gazebo as a Physics simulator and NS-3 as a network simulator. Also, we design our algorithm considering the Perception-Action loop inside a closed communication channel, which is one of the essential factors in a contested scenario with the requirement of high fidelity in terms of data transmission. We validate our approach empirically at both the simulation and system level for both line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios. Our approach achieves a noticeable improvement in terms of reducing packet loss probability ($\approx$11\%), and average packet delay ($\approx$10\%) compared to the fixed window size-based synchronization approach.


翻译:随着现代机器人的进步,自主代理商现在有能力托管精密的算法,从而使他们能够做出明智的决定。但在现实世界系统中直接开发和测试这种算法是乏味的,可能导致宝贵资源的浪费。特别是在战场环境中,通信对于确定系统行为和可用性至关重要的多种多试系统。由于在部署之前需要模拟这种情景的模拟器(共同模拟),这些模拟器之间的同步至关重要。旨在解决这一问题的现有工作没有解决部署的代理商之间的多样性问题。在这项工作中,我们提出\textit{SynchroSim},这是一个用于模拟复杂多机器人系统的集成混合多试剂系统。我们在这里提出一个速度驱动差异可调整窗口大小的方法,以降低包装损失概率的可能性。它考虑到部署的代理商各自的速度,以计算适当的窗口尺寸,然后传送它们之间的数据。我们认为,我们特定的模拟线(Slight{SynchroomroSimmission),但为了执行结果,我们用一个综合的混合的概率模拟模拟工具模拟器系统,我们用了一个高级的系统(Outel-deal-deal-deal del) 系统在设计中,我们用了一个高级数据流流流-deal-deal-deal-deal-deal-deal-deal-deal-deal-deal-deal-deal-deal-deal-deal-de,我们用了一个数据系统的一个数据系统,我们用了一个稳定的系统,我们用了一个高级数据系统,我们用了一个数字-deal-deal-deal-deal-deal-defal-defal-defal-defil-de-defal-deal-deal-deal-de-defal-de-de-al-de-de-de-de-de-de-de-de-de-de-de-de-I-de-de-de-de-de-de-de-deal-I-de-de-deal-deal-deal-deal-de-I-deal-deal-deal-deal-de-I-de-de-I-de-de-I-deal-deal-deal-al-deal-de-de-I-I-I-I-I-I-

0
下载
关闭预览

相关内容

International Middleware会议是讨论中间件设计、构造和使用方面的重要创新和最新进展的论坛。中间件是位于应用程序和底层平台(操作系统;数据库;硬件)之间的分布式系统软件,和/或将分布式应用程序、数据库或设备连接在一起。它的主要作用是协调和实现不同层或组件之间的通信,同时将分布的大部分复杂性隔离为一个单一的、经过充分测试和理解的系统抽象。 官网链接:http://www.middleware-conference.org/
Into the Metaverse,93页ppt介绍元宇宙概念、应用、趋势
专知会员服务
47+阅读 · 2022年2月19日
【NUS-Xavier教授】注意力神经网络,79页ppt
专知会员服务
62+阅读 · 2021年11月25日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年10月5日
VIP会员
相关VIP内容
Into the Metaverse,93页ppt介绍元宇宙概念、应用、趋势
专知会员服务
47+阅读 · 2022年2月19日
【NUS-Xavier教授】注意力神经网络,79页ppt
专知会员服务
62+阅读 · 2021年11月25日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员