The recent development of scintillation crystals combined with $\gamma$-rays sources opens the way to an imaging concept based on Compton scattering, namely Compton scattering tomography (CST). The associated inverse problem rises many challenges: non-linearity, multiple order-scattering and high level of noise. Already studied in the literature, these challenges lead unavoidably to uncertainty of the forward model. This work proposes to study exact and approximated forward models and develops two data-driven reconstruction algorithms able to tackle the inexactness of the forward model. The first one is based on the projective method called regularized sequential subspace optimization (RESESOP). We consider here a finite dimensional restriction of the semi-discrete forward model and show its well-posedness and regularisation properties. The second one considers the unsupervised learning method, deep image prior (DIP), inspired by the construction of the model uncertainty in RESESOP. The methods are validated on Monte-Carlo data.
翻译:最近开发的闪烁晶体与美元-伽玛元-射线源相结合的闪烁晶体最近开发为基于Compton散射的成像概念开辟了道路,即Compton散射摄影(CST) 。 与此相关的反向问题提出了许多挑战: 非线性、 多个顺序分散和高度噪音。 在文献中已经研究过, 这些挑战不可避免地导致前方模型的不确定性。 这项工作提议研究精确的和近似的前方模型, 并开发两种数据驱动的重建算法, 能够解决前方模型的不精确性。 第一个基于称为常规序列子空间优化(RESESOP)的投影法。 我们在这里考虑半分立式前方模型的有限尺寸限制, 并显示其稳妥性和常规化特性。 第二则考虑在RESESOP模型不确定性构建的启发下, 未经监督的早期图像(DIP) 。 方法在蒙特- 卡洛 数据上得到验证。