User interest exploration is an important and challenging topic in recommender systems, which alleviates the closed-loop effects between recommendation models and user-item interactions. Contextual bandit (CB) algorithms strive to make a good trade-off between exploration and exploitation so that users' potential interests have chances to expose. However, classical CB algorithms can only be applied to a small, sampled item set (usually hundreds), which forces the typical applications in recommender systems limited to candidate post-ranking, homepage top item ranking, ad creative selection, or online model selection (A/B test). In this paper, we introduce two simple but effective hierarchical CB algorithms to make a classical CB model (such as LinUCB and Thompson Sampling) capable to explore users' interest in the entire item space without limiting it to a small item set. We first construct a hierarchy item tree via a bottom-up clustering algorithm to organize items in a coarse-to-fine manner. Then we propose a hierarchical CB (HCB) algorithm to explore users' interest in the hierarchy tree. HCB takes the exploration problem as a series of decision-making processes, where the goal is to find a path from the root to a leaf node, and the feedback will be back-propagated to all the nodes in the path. We further propose a progressive hierarchical CB (pHCB) algorithm, which progressively extends visible nodes which reach a confidence level for exploration, to avoid misleading actions on upper-level nodes in the sequential decision-making process. Extensive experiments on two public recommendation datasets demonstrate the effectiveness and flexibility of our methods.


翻译:在推荐人系统中,用户的兴趣探索是一个重要且具有挑战性的议题,它减轻了建议模式和用户项目互动之间的闭路交易效应。背景盗匪算法(CB)努力在勘探和开发之间做出一个良好的交易,使用户的潜在利益有机会暴露。然而,传统的CB算法只能应用于一个小型的抽样项目集(通常为数百个),这迫使推荐人系统中的典型应用仅限于候选后级、主页顶级项目排名、创新选择或在线模式选择(A/B测试),在本文中,我们引入两个简单但有效的CB级算法(CB级算法)来制造一个典型的CB型模型(如LinCB和Thompson Sampling),能够探索用户在整个项目空间中的兴趣,而不会将它限制在小项组合中。我们首先通过一个底盘组合算法将项目组织起来,以粗略的方式将项目组织起来。然后我们提出一个等级CB级(HC级算法)算出用户对等级树的兴趣。HCB将探索问题作为典型的高级CB级(LUCB级)的系列,作为一系列的探索问题,从一个清晰的轨道到一个不伸缩的路径,我们不伸缩到一个直走向一个直向的路径。我们的一个目标到一个直路路到一个直到一个直到一个直径的路径。我们为直向的路径。我们不伸缩的路径,从一个直向的路径,从一个直路路路路。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
专知会员服务
75+阅读 · 2021年9月27日
【UAI2021教程】贝叶斯最优学习,65页ppt
专知会员服务
64+阅读 · 2021年8月7日
专知会员服务
50+阅读 · 2021年6月30日
【DeepMind】强化学习教程,83页ppt
专知会员服务
151+阅读 · 2020年8月7日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Towards Topic-Guided Conversational Recommender System
Arxiv
23+阅读 · 2018年8月3日
Graph-Based Recommendation System
Arxiv
4+阅读 · 2018年7月31日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
6+阅读 · 2018年3月28日
VIP会员
相关VIP内容
专知会员服务
75+阅读 · 2021年9月27日
【UAI2021教程】贝叶斯最优学习,65页ppt
专知会员服务
64+阅读 · 2021年8月7日
专知会员服务
50+阅读 · 2021年6月30日
【DeepMind】强化学习教程,83页ppt
专知会员服务
151+阅读 · 2020年8月7日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员