We present TensoRF, a novel approach to model and reconstruct radiance fields. Unlike NeRF that purely uses MLPs, we model the radiance field of a scene as a 4D tensor, which represents a 3D voxel grid with per-voxel multi-channel features. Our central idea is to factorize the 4D scene tensor into multiple compact low-rank tensor components. We demonstrate that applying traditional CP decomposition -- that factorizes tensors into rank-one components with compact vectors -- in our framework leads to improvements over vanilla NeRF. To further boost performance, we introduce a novel vector-matrix (VM) decomposition that relaxes the low-rank constraints for two modes of a tensor and factorizes tensors into compact vector and matrix factors. Beyond superior rendering quality, our models with CP and VM decompositions lead to a significantly lower memory footprint in comparison to previous and concurrent works that directly optimize per-voxel features. Experimentally, we demonstrate that TensoRF with CP decomposition achieves fast reconstruction (<30 min) with better rendering quality and even a smaller model size (<4 MB) compared to NeRF. Moreover, TensoRF with VM decomposition further boosts rendering quality and outperforms previous state-of-the-art methods, while reducing the reconstruction time (<10 min) and retaining a compact model size (<75 MB).
翻译:我们提出TensoRF, 这是一种建模和重建光场的新办法。与纯粹使用 MLPs的NERF不同的是,我们将场景的亮度区域建为4D 色调,它代表着一种3D voxel网格,带有每伏特氏多声道特性。我们的核心想法是将四维场点变异成多种紧凑的低声调组件。我们证明,在我们的框架内,应用传统的CP分解将气压分解成带有紧凑矢量的一等分级组件,可以改善香草内分解。为了进一步提高性能,我们引入了一个新的矢量-光线(VM)分解法(VM),这代表了一种三维维线网格(VM)的低位限制,将电压变异盘变成紧凑的矢量和矩阵因素。除了更高级的外,我们使用CP和VM分解的模型可以大大降低记忆足迹与直接优化每vox10 特性的先前和同时模型的距离。我们实验表明, 带有CP分位的TS- co- co- res- rema- revition 的T- report- 将实现快速重建( < 30- mex- mex- serma- sq- sq- sq- sq- silate) 将比 和前一等 和后制的比 和后程的比前一比 和后制的模型(S- sq- mB- sal- sal- sq- sq- sal- ) 将改进- 和后制的比 和后程 和后制的比 和后制制 将改进的比前一 和后制的比前一等的比前的比前一等 和后制 和后制 和后制 和后制 和后制 和后制的模型 和后制的模型 和后制- 后制- 后制的模型 和后制 和后制 后制 后制 后制 和后制 和后制 后制- d- d- d- d- d- d- d- m- m- m- m- m- m- m- m- m-