Mobile health (mHealth) technologies empower patients to adopt/maintain healthy behaviors in their daily lives, by providing interventions (e.g. push notifications) tailored to the user's needs. In these settings, without intervention, human decision making may be impaired (e.g. valuing near term pleasure over own long term goals). In this work, we formalize this relationship with a framework in which the user optimizes a (potentially impaired) Markov Decision Process (MDP) and the mHealth agent intervenes on the user's MDP parameters. We show that different types of impairments imply different types of optimal intervention. We also provide analytical and empirical explorations of these differences.
翻译:移动健康(mHealth)技术通过提供适合用户需要的干预措施(如催促通知),使病人能够在其日常生活中采取/保持健康行为,在这些环境中,在没有干预的情况下,人类决策可能受到损害(例如,将短期快乐置于长期目标之上)。在这项工作中,我们将这种关系与用户优化(可能受损的)Markov决策程序(MDP)和健康代理干预用户的MDP参数的框架正式化。我们表明,不同类型的缺陷意味着不同类型的最佳干预。我们还提供了对这些差异的分析和经验探索。