项目名称: Ag@Fe3O4/TiO2微纳分级结构的构筑及增强光催化活性研究

项目编号: No.51272255

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 一般工业技术

项目作者: 张云霞

作者单位: 中国科学院合肥物质科学研究院

项目金额: 73万元

中文摘要: 本项目以水体环境中有机污染物的有效治理为目标,设计和构筑具有分级结构的Ag@Fe3O4/TiO2微纳复合材料。通过调节银纳米颗粒的形貌、尺寸及其周围电解质环境实现表面等离子体共振吸收峰的调制,拓展复合材料的太阳光响应范围;借助Fe3O4赋予复合材料磁响应性能,达到回收再利用的目的;利用二氧化钛的微纳分级结构及表面修饰提高目标污染物的预富集能力,增强光的捕捉与吸收。揭示微纳复合材料的微观结构与表面等离子体共振效应、光催化性能以及磁响应性之间的关联;通过微纳复合材料的结构设计,实现微纳复合材料综合性能的优化。研究微纳复合材料对有机污染物的增强可见光光催化降解规律,揭示其内在机制,实现对有机污染物的有效治理。本项目的实施,为发展兼具高效吸附、降解以及易于回收循环再利用等多重功能于一体的高性能可见光光催化剂奠定了材料基础,对解决当前全球面临的水环境污染问题具有重要意义与实际应用价值。

中文关键词: 分级结构;微纳材料;光催化;表面等离子体共振;降解

英文摘要: The objective of this project is to design and construct Ag@Fe3O4/TiO2 micro/nanocomposite materials with hierarchical structures, upon which to realize the effective removal of organic pollutants in water environment. Surface Plasmon resonance of Ag nanoparticles can be modulated facily by altering their morphology, size and surrounding media, upon which to extend the sunlight response range of the composite materials. The inclusion of Fe3O4 makes the composite materials the magnetic responsiveness,which ensure the easy separation of the photocatalyst from the reaction system. The special fine micro/nano structure and surface modification of TiO2 will enhance the effective absorption for the objective pollutants and light harvesting. The surface Plasmon resonance, magnetic properties and photocatalytic activity of the as-synthesized micro/nanocomposites will be investigated systemically. The relationship between different components and the relative functions will be also analyzed. The comprehensive performance could be optimized by the design and synthesis of micro/nano structural materials. The rules of enhanced photocatalysis of the micro/nanocomposites will be analyzed and the corresponding photocatalytic mechanism will be investigated to promote the reliable degradation for organic pollutants. The current

英文关键词: hierarchical;micro/nanomaterials;photocatalysis;surface plasma resonance;degradation

成为VIP会员查看完整内容
0

相关内容

全球能源转型及零碳发展白皮书
专知会员服务
39+阅读 · 2022年3月1日
《城市大脑发展白皮书(2022)》发布!
专知会员服务
118+阅读 · 2022年1月8日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
31+阅读 · 2021年5月7日
《碳中和愿景下储能产业发展白皮书》27页ppt
专知会员服务
65+阅读 · 2021年3月30日
《人工智能安全框架(2020年)》白皮书,68页pdf
专知会员服务
166+阅读 · 2021年1月9日
数据驱动的智能运营白皮书,18页pdf
专知
0+阅读 · 2021年3月24日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Residual Mixture of Experts
Arxiv
0+阅读 · 2022年4月20日
Arxiv
13+阅读 · 2020年4月12日
小贴士
相关VIP内容
全球能源转型及零碳发展白皮书
专知会员服务
39+阅读 · 2022年3月1日
《城市大脑发展白皮书(2022)》发布!
专知会员服务
118+阅读 · 2022年1月8日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
31+阅读 · 2021年5月7日
《碳中和愿景下储能产业发展白皮书》27页ppt
专知会员服务
65+阅读 · 2021年3月30日
《人工智能安全框架(2020年)》白皮书,68页pdf
专知会员服务
166+阅读 · 2021年1月9日
相关资讯
数据驱动的智能运营白皮书,18页pdf
专知
0+阅读 · 2021年3月24日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员