Wireless traffic prediction is essential for cellular networks to realize intelligent network operations, such as load-aware resource management and predictive control. Existing prediction approaches usually adopt centralized training architectures and require the transferring of huge amounts of traffic data, which may raise delay and privacy concerns for certain scenarios. In this work, we propose a novel wireless traffic prediction framework named \textit{Dual Attention-Based Federated Learning} (FedDA), by which a high-quality prediction model is trained collaboratively by multiple edge clients. To simultaneously capture the various wireless traffic patterns and keep raw data locally, FedDA first groups the clients into different clusters by using a small augmentation dataset. Then, a quasi-global model is trained and shared among clients as prior knowledge, aiming to solve the statistical heterogeneity challenge confronted with federated learning. To construct the global model, a dual attention scheme is further proposed by aggregating the intra- and inter-cluster models, instead of simply averaging the weights of local models. We conduct extensive experiments on two real-world wireless traffic datasets and results show that FedDA outperforms state-of-the-art methods. The average mean squared error performance gains on the two datasets are up to 10\% and 30\%, respectively.


翻译:无线交通预测对于蜂窝网络实现智能网络运作至关重要,例如负载觉资源管理和预测控制。现有的预测方法通常采用集中式培训结构,并需要传输大量交通数据,这可能在某些情景中引起延误和隐私问题。在这项工作中,我们提议了一个名为\ textit{Dual attention-Point-Base-Federal Learning}(FedDA)的新颖无线交通预测框架,根据这个框架,由多个边缘客户合作培训一个高质量的预测模型。为了同时捕捉各种无线交通模式,并在当地保留原始数据,FedDA首先利用小型增强数据集将客户分组成不同的集群。然后,对准全球模式进行培训,作为先前的知识在客户中共享,目的是解决与联邦化学习有关的统计多样性挑战。为了构建全球模型,我们进一步提出了双重关注计划,将内部和集群间模型合并起来,而不是简单地平均本地模型的重量。我们对两个真实世界无线通信数据集进行广泛的实验,结果显示FedDA在10年平均和10年平均成绩差。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
论文浅尝 | Global Relation Embedding for Relation Extraction
开放知识图谱
12+阅读 · 2019年3月3日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
6+阅读 · 2019年11月14日
Learning Discriminative Model Prediction for Tracking
Federated Learning for Mobile Keyboard Prediction
Arxiv
5+阅读 · 2018年11月8日
VIP会员
相关VIP内容
相关资讯
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
论文浅尝 | Global Relation Embedding for Relation Extraction
开放知识图谱
12+阅读 · 2019年3月3日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员