This paper discusses parGeMSLR, a C++/MPI software library for the solution of sparse systems of linear algebraic equations via preconditioned Krylov subspace methods in distributed-memory computing environments. The preconditioner implemented in parGeMSLR is based on algebraic domain decomposition and partitions the symmetrized adjacency graph recursively into several non-overlapping partitions via a p-way vertex separator, where p is an integer multiple of the total number of MPI processes. From a numerical perspective, parGeMSLR builds a Schur complement approximate inverse preconditioner as the sum between the matrix inverse of the interface coupling matrix and a low-rank correction term. To reduce the cost associated with the computation of the approximate inverse matrices, parGeMSLR exploits a multilevel partitioning of the algebraic domain. The parGeMSLR library is implemented on top of the Message Passing Interface and can solve both real and complex linear systems. Furthermore, parGeMSLR can take advantage of hybrid computing environments with in-node access to one or more Graphics Processing Units. Finally, the parallel efficiency (weak and strong scaling) of parGeMSLR is demonstrated on a few model problems arising from discretizations of 3D Partial Differential Equations.
翻译:本文讨论 PGeMSLR, 是一个C++/ MPI 软件库, 用于在分布式模拟计算环境中通过有先决条件的 Krylov 子空间方法解决线性代数方程式的稀疏系统。 在 PGeMSLR 中执行的先决条件是基于代数域分解和分区的代数域分解和分解, 相匹配的相近图形通过 pway verversex 分隔器转成多个非重叠分区。 Pp 是 MPI 进程总数的一个整数组合。 从数字角度看, parGeMSLRR 构建了一个舒尔补充约为反向的先决条件, 作为介面组合组合矩阵和低级校正术语之间的总和。 为了降低与计算约反向矩阵相关的成本, ALGMSLR 利用了多个非重叠的分区分隔区。 CPeMSL 图书馆在信息传递界面的最顶端安装, 可以同时解决真实和复杂的线性系统。 此外, CPEMLRRD 能够利用混合计算环境的优势, 快速的平面平面平面平面平面平面处理器或直径。