Federated learning uses a set of techniques to efficiently distribute the training of a machine learning algorithm across several devices, who own the training data. These techniques critically rely on reducing the communication cost -- the main bottleneck -- between the devices and a central server. Federated learning algorithms usually take an optimization approach: they are algorithms for minimizing the training loss subject to communication (and other) constraints. In this work, we instead take a Bayesian approach for the training task, and propose a communication-efficient variant of the Langevin algorithm to sample a posteriori. The latter approach is more robust and provides more knowledge of the \textit{a posteriori} distribution than its optimization counterpart. We analyze our algorithm without assuming that the target distribution is strongly log-concave. Instead, we assume the weaker log Sobolev inequality, which allows for nonconvexity.
翻译:联邦学习使用一套技术来有效地在多个设备中分配机器学习算法的培训,这些技术拥有培训数据。这些技术关键地依赖于降低设备与中央服务器之间的通信成本 -- -- 主要的瓶颈。 联邦学习算法通常采取优化方法:它们是尽量减少受通信(和其他)制约的培训损失的算法。在这项工作中,我们采用巴伊西亚方法来开展培训任务,并提议一个Langevin算法的通信高效变量来抽取一个事后样本。后一种方法更为健全,比优化对应方法更能提供对\ textit{a posteriori}分布的更多知识。我们分析我们的算法时没有假设目标分布是强烈的日志连接。相反,我们假设了较弱的log Sobolev不平等性,允许非混杂性。